Estimation of atomic charges in boron nitrides

Authors

  • Levan Chkhartishvili Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175, Georgia
  • Shorena Dekanosidze Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175, Georgia
  • Nodar Maisuradze Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175, Georgia
  • Manana Beridze Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175, Georgia
  • Ramaz Esiava Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175, Georgia

DOI:

https://doi.org/10.15587/1729-4061.2015.44291

Keywords:

point atomic charges model, semiempirical estimates, boron nitrides

Abstract

Boron nitrides (BN) are compounds with bonds of covalent–ionic type. Therefore, binding polarity is an important characteristic affecting their physical properties. Dependencies of measurable parameters on static effective charges of constituent atoms are so complex that, these are virtually undetectable experimentally. As for the theoretically obtained atomic charges in boron nitrides, they are characterized by a significant scatter making them almost unreliable. The general reason for this lies in the impossibility of unambiguous division of the electron density between atoms of elements. It pushes the search for a semiempirical solution of the problem.

We have derived the expression for the effective charge number  in a binary compound (effective charges of B and N atoms should be  and , respectively) depending on number of molecules  in primitive parallelogram, its sectional area  transverse to the external electric field direction, Young’s modulus  and permittivity  in same direction. Semiempirically estimated values of  (in - and -directions) are physically reasonable: hexagonal h-BN – 0.35 and 0.09, cubic c-BN – 0.49, and wurtzite-like w-BN boron nitrides – 0.76 and 0.50.

Also quite natural are qualitative conclusions: in h-BN intra-layer bonds polarity is much stronger than that between hexagonal layers; bonds are stronger polarized in denser modifications c-BN and w-BN, which are characterized by higher coordination numbers as well; bonds polarities in c-BN and along -axis in w-BN are almost indistinguishable; and bonds polarities in - and -directions in w-BN are different.

Obtained static charges can be used in the refinement of the BN electron structure calculations.

Author Biographies

Levan Chkhartishvili, Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175

Professor, Doctor of Physical-Mathematical Sciences

Department of Engineering Physics

Shorena Dekanosidze, Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175

Assistant Professor, Candidate of Technical Sciences

Department of Engineering Physics

Nodar Maisuradze, Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175

Associate Professor, Candidate of Physical-Mathematical Sciences

Department of Engineering Physics

Manana Beridze, Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175

Senior Lecturer, Doctor of Philosophy in Engineering Physics

Department of Engineering Physics

Ramaz Esiava, Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175

Assistant Professor, Candidate of Technical Sciences

Department of Engineering Physics

References

  1. Prasad, C., Dubey, J. D. (1984). Electronic Structure and Properties of Cubic Boron Nitride. Physica Status Solidi B, 125 (2), 629–638. doi: 10.1002/pssb.2221250223
  2. Born, M., Huang, K. (1954). Dynamical Theory of Crystal Lattices. Oxford: Oxford University Press, 414.
  3. Böttger, H. (1983). Principles of the Theory of Lattice Dynamics. Weinheim: Physik–Verlag, 330.
  4. Ghosez, P., Michenaud, J.-P., Gonze, X. (1998). Dynamical atomic charges: The case of AB O 3 compounds. Physical Review B, 58 (10), 6224–6240. doi: 10.1103/physrevb.58.6224
  5. King-Smith, R. D., Vanderbilt, D. (1993). Theory of polarization of crystalline solids. Physical Review B, 47 (3), 1651–1654. doi: 10.1103/physrevb.47.1651
  6. Resta, R. (1994). Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Reviews of Modern Physics, 66 (3), 899–915. doi: 10.1103/revmodphys.66.899
  7. Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73 (2), 515–562. doi: 10.1103/revmodphys.73.515
  8. García, A., Cohen, M. L. (1993). First-principles ionicity scales. I. Charge asymmetry in the solid state. Physical Review B, 47 (8), 4215–4220. doi: 10.1103/physrevb.47.4215
  9. García, A., Cohen, M. L. (1993). First-principles ionicity scales. II. Structural coordinates from atomic calculations. Physical Review B, 47 (8), 4221–4225. doi: 10.1103/physrevb.47.4221
  10. Evarestov, R. A. (1982). Quantum-Chemical Methods in Theory of Solids. Leningrad: Leningrad University Press.
  11. Will, G., Kirfel, A., Josten, B. (1986). Charge density and chemical bonding in cubic boron nitride. Journal of the Less Common Metals, 117 (1-2), 61–71. doi: 10.1016/0022-5088(86)90012-3
  12. Will, G., Kirfel, A. (1986). Electron density distribution studies on cubic BN, TiB2 and boron carbide B13C2. AIP Conference Proceedings, 140, 87–96.
  13. Kawai, J., Muramatsu, Y., Kobayashi, M., Higashi, I., Adachi, H. (1993). Discrete-variational Hartree–Fock–Slater calculations of B36N24 with comparison to C60. Japanese Journal of Applied Physics, 10, 72–77.
  14. Pokropivny, V. V., Skorokhod, V. V., Oleinik, G. S., Kurdyumov, A. V., Bartnitskaya, T. S., Pokropivny, A. V., Sisonyuk, A. G., Sheichenko, D. M. (2000). Boron Nitride Analogs of Fullerenes (the Fulborenes), Nanotubes, and Fullerites (the Fulborenites). Journal of Solid State Chemistry, 154 (1), 214–222. doi: 10.1006/jssc.2000.8838
  15. Vandenbosch, R. (2003). Gas-phase anions containing B and N. Physical Review A, 67 (1). doi: 10.1103/physreva.67.013203
  16. Silver, A. H., Bray, P. J. (1960). NMR Study of Bonding in Some Solid Boron Compounds. The Journal of Chemical Physics, 32 (1), 288–292. doi: 10.1063/1.1700918
  17. Bray, P. J. (1986). NMR studies of borates and borides. AIP Conference Proceedings, 140, 142–167.
  18. Khusidman, M. B., Neshpor, V. S. (1970). Investigation of hexagonal and cubic boron nitrides by electron paramagnetic resonance. Powder Metallurgy, 8, 72–73.
  19. Zunger, A. (1974). A molecular calculation of electronic properties of layered crystals. II. Periodic small cluster calculation for graphite and boron nitride. Journal of Physics C: Solid State Physics, 7 (1), 96–106. doi: 10.1088/0022-3719/7/1/017
  20. Joyner, D. J., Hercules, D. M. (1980). Chemical bonding and electronic structure of B2O3, H3BO3, and BN: An ESCA, Auger, SIMS, and SXS study. The Journal of Chemical Physics, 72 (2), 1095. doi: 10.1063/1.439251
  21. Xu, Y.-N., Ching, W. Y. (1991). Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Physical Review B, 44 (15), 7787–7798. doi: 10.1103/physrevb.44.7787
  22. Lawniczak-Jablonska, K., Suski, T., Gorczyca, I., Christensen, N. E., Attenkofer, K. E., Perera, R. C. C. et. al. (2000). Electronic states in valence and conduction bands of group-III nitrides: Experiment and theory. Physical Review B, 61 (24), 16623–16632. doi: 10.1103/physrevb.61.16623
  23. Levin, A. A., Syrkin, Ya. K., Deyatkin, M. E. (1966). Selection of parameters for semi-empirical description of electronic structure of tetrahedral crystals. Journal of Structural Chemistry, 7, 583–588.
  24. van Vechten, J. A. (1969). Semiempirical band calculations. Physical Review, 187, 1007–1016.
  25. Samsonov, G. V. (1969). Non-Metallic Nitrides. Moscow: Metallurgy, 264.
  26. Neshpor, V. S., Khisidman, M. B. (1969). On electronic structure of boron nitride. Inorganic Materials, 5, 600–601.
  27. Zunger, A., Freeman, A. J. (1978). Ab initio self-consistent study of the electronic structure and properties of cubic boron nitride. Physical Review B, 17 (4), 2030–2042. doi: 10.1103/physrevb.17.2030
  28. Harrison, W. A. (1980). Electronic Structure and the Properties of Solids – The Physics of the Chemical Bond. San Francisco: W. H. Freeman & Co, 61.
  29. Dovesi, R., Pisani, C., Roetti, C., Dellarole, P. (1981). Exact-exchange Hartree-Fock calculations for periodic systems. IV. Ground-state properties of cubic boron nitride. Physical Review B, 24 (8), 4170–4176. doi: 10.1103/physrevb.24.4170
  30. Nemoshkalenko, V. V., Aleshin, V. G. (1983). Electronic Structure of Crystals. Kiev: Naukova Dumka.
  31. Huang, M.-Z., Ching, W. Y. (1985). A minimal basis semi-ab initio approach to the band structures of semiconductors. Journal of Physics and Chemistry of Solids, 46 (8), 977–995. doi: 10.1016/0022-3697(85)90101-5
  32. Van Camp, P. E., Van Doren, V. E., Devreese, J. T. (1988). Ground State and Electronic Properties of Silicon Carbide and Boron Nitride. Physica Status Solidi B, 146 (2), 573–587. doi: 10.1002/pssb.2221460218
  33. Ganduglia-Pirovano, M. V., Stollhoff, G. (1991). Electronic correlations of cubic boron nitride. Physical Review B, 44 (8), 3526–3536. doi: 10.1103/physrevb.44.3526
  34. Christensen, N. E., Gorczyca, I. (1994). Optical and structural properties of III-V nitrides under pressure. Physical Review B, 50 (7), 4397–4415. doi: 10.1103/physrevb.50.4397
  35. Karch, K., Bechstedt, F. (1997). Ab initio lattice dynamics of BN and AlN: Covalent versus ionic forces. Physical Review B, 56 (12), 7404–7415. doi: 10.1103/physrevb.56.7404
  36. Shimada, K., Sota, T., Suzuki, K. (1998). First-principles study on electronic and elastic properties of BN, AlN, and GaN. Journal of Applied Physics, 84 (9), 4951–4958. doi: 10.1063/1.368739
  37. Ferhat, M., Zaoui, A., Certier, M., Aourag, H. (1998). Electronic structure of BN, BP and BAs. Physica B: Condensed Matter, 252 (3), 229–236. doi: 10.1016/s0921-4526(98)00149-5
  38. Miotto, R., Srivastava, G., Ferraz, A. (1999). First-principles pseudopotential study of GaN and BN (110) surfaces. Surface Science, 426 (1), 75–82. doi: 10.1016/s0039-6028(99)00282-4
  39. Xu, Y.-N., Ching, W. Y. (1993). Electronic, optical, and structural properties of some wurtzite crystals. Physical Review B, 48 (7), 4335–4351. doi: 10.1103/physrevb.48.4335
  40. Siklitsky, V. (2015). BN – Boron Nitride. Electronic archive: “New Semiconductor Materials. Characteristics and Properties”. Available at: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/BN/index.html
  41. Shuvalov, L. A., Urusovskaya, A. A., Zheludev, I. S., Zelenskij, A. V., Semiletov, S. A., Grechushnikov, B. N., Chistyakov, I. G., Pinkin, S. A. (1981). Modern Crystallography. Volume 4: Physical Properties of Crystals. Nauka, Moscow.
  42. Shackelford, J. F., Alexander, W. (Eds.) (2001). CRC Materials Science and Engineering Handbook. CRC Press LLC, Boca Raton.
  43. Chopra, N. G., Zettl, A. (1998). Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Communications, 105 (5), 297–300. doi: 10.1016/s0038-1098(97)10125-9
  44. Chkhartishvili, L. (Ed.) (2011). Boron nitride nanosystems. Boron Based Solids. Trivandrum: Research Signpost, 93–145.
  45. Chkhartishvili, L., Lezhava, D., Tsagareishvili, O. (2000). Quasi-classical Determination of Electronic Energies and Vibration Frequencies in Boron Compounds. Journal of Solid State Chemistry, 154 (1), 148–152. doi: 10.1006/jssc.2000.8826
  46. Chkhartishvili, L. S. (2004). Quasi-classical estimates of the lattice constant and band gap of a crystal: Two-dimensional boron nitride. Physics of the Solid State, 46 (11), 2126–2133. doi: 10.1134/1.1825560
  47. Chkhartishvili, L. (2004). Quasi-classical approach: Electronic structure of cubic boron nitride crystals. Journal of Solid State Chemistry, 177 (2), 395–399. doi: 10.1016/j.jssc.2003.03.004
  48. Chkhartishvili, L. (2006). Density of electron states in wurtzite-like boron nitride: A quasi-classical calculation. Materials Science: An Indian Journal, 2, 18–23.

Downloads

Published

2015-06-17

How to Cite

Chkhartishvili, L., Dekanosidze, S., Maisuradze, N., Beridze, M., & Esiava, R. (2015). Estimation of atomic charges in boron nitrides. Eastern-European Journal of Enterprise Technologies, 3(5(75), 50–57. https://doi.org/10.15587/1729-4061.2015.44291

Issue

Section

Applied physics