Space perception analysis in the panini projection and its using in computer graphics

Authors

  • Петр Алексеевич Качанов National Technical University «Kharkiv Polytechnic Institute» Frunze str. 21, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-0781-0853
  • Андрей Александрович Зуев National Technical University «Kharkiv Polytechnic Institute» 21 Frunze str., Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-8206-4304
  • Константин Николаевич Яценко National Technical University «Kharkiv Polytechnic Institute» 21 Frunze str., Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-1990-5646

DOI:

https://doi.org/10.15587/1729-4061.2015.47678

Keywords:

Panini projection, veduta, space perception, spherical projection, cylindrical projection, space compression

Abstract

The main parameter in the study of virtual reality for the human-computer interaction is the information received by the person. However, the transformation from three-dimensional space to two-dimensional is accompanied by a distortion in the resulting images. The paper describes the Panini projection model in terms of the information content and engineering psychology.

The analysis of the data describing the features of human visual perception of the virtual space is performed. It is shown that the mathematical model of the Panini projection is based on geometric transformations, which correspond to the system of human visual perception and produces biologically correct three-dimensional images. A description of non-planar perspective projections is given.

Finally, it is concluded that the simple geometric transformations, which are available to the observer can improve the information content of the synthesized images. The results of using the described projection models in computer graphics were obtained. A comparison of images in the perspective projection and Panini projection was carried out. The reasons of using the described projection type were explained.

Author Biographies

Петр Алексеевич Качанов, National Technical University «Kharkiv Polytechnic Institute» Frunze str. 21, Kharkiv, Ukraine, 61002

Professor, Doctor of technical sciences

Head of the department "Automation and Control in Technical Systems"

Андрей Александрович Зуев, National Technical University «Kharkiv Polytechnic Institute» 21 Frunze str., Kharkov, Ukraine, 61002

PhD, Associate professor

Department "Automation and Control in Technical Systems"

Константин Николаевич Яценко, National Technical University «Kharkiv Polytechnic Institute» 21 Frunze str., Kharkov, Ukraine, 61002

Postgraduate student

Department "Automation and Control in Technical Systems"

References

  1. Kovaljov, A. M., Lishhenko, V. E., Stepanov, M. V. (2007). O sistemah perspektiv dlja komp'juternoj grafiki. Avtometrija, 43 (3), 48–56.
  2. Raushenbah, B. V. (1986). Sistemy perspektivy v izobrazitel'nom iskusstve. Obshhaja teorija perspektivy. Moscow: Nauka, 256.
  3. Kovalev, A. M. (2002). Ob uvelichenii predmetov v perceptivnom prostranstve. Avtometrija, 38 (5), 86–94.
  4. Fleck, M. (1995). Perspective Projection: the Wrong Imaging Model. University of Iowa, Computer Science. Available at: http://mfleck.cs.illinois.edu/my-papers/stereographic-TR.pdf
  5. Bayarri, S. (1995). Computing non-planar perspectives in real time. Computers & Graphics, 19 (3), 431–440. doi: 10.1016/0097-8493(95)00013-3
  6. Yonggao, Y., Chen, J. X., Beheshti, M. (2005). Nonlinear perspective projections and magic lenses: 3D view deformation. IEEE Computer Graphics and Applications, 25 (1), 76–84. doi: 10.1109/mcg.2005.29
  7. Hershenson, M. (1998). Visual Space Perception: A Primer. MIT Press, 269.
  8. Sharpless, T., Postle, B., German, D. (2010). Pannini: A New Projection for Rendering Wide Angle Perspective Images. International Symposium on Computational Aesthetics, London. Available at: http://tksharpless.net/vedutismo/Pannini/panini.pdf
  9. Kovalev, A. M. (1998). Virtual'naja real'nost' v sfericheskoj perspective. "Grafikon-98": trudy 8-j Mezhdunar. konf. po komp'juternoj grafike i vizualizacii, Moskva, 95–102.
  10. Kovalev, A. M. (2003). O vizual'no vosprinimaemom prostranstve predmetov Avtometrija, 39 (6), 3–12.
  11. Casas, F. R. (1983). Flat-Sphere Perspective. Leonardo, 16 (1), 1–9. doi: 10.2307/1575034
  12. Shiffman, H. R. (2003). Oshhushhenie i vosprijatie. Piter, 928.
  13. Ikeuchi, K. (1984). Shape from regular patterns. Artificial Intelligence, 22 (1), 49–75. doi: 10.1016/0004-3702(84)90025-0
  14. Polack, J. A., Piegl, L. A., Carter, M. L. (1997). Perception of images using cylindrical mapping. The Visual Computer, 13 (4), 155–167. doi: 10.1007/s003710050096
  15. Michael, K. (1986). The psychology of perspective and renaissance art. Cambridge University Press.
  16. Vishwanath, D., Girshick, A. R., Banks, M. S. (2005). Why pictures look right when viewed from the wrong place. Nature Neuroscience, 8 (10), 1401–1410. doi: 10.1038/nn1553
  17. Pirenne, M. (1970). Optics, Painting & Photography. Cambridge University Press.

Published

2015-08-25

How to Cite

Качанов, П. А., Зуев, А. А., & Яценко, К. Н. (2015). Space perception analysis in the panini projection and its using in computer graphics. Eastern-European Journal of Enterprise Technologies, 4(2(76), 36–43. https://doi.org/10.15587/1729-4061.2015.47678