Analysis of the fouling in heat exchangers by irreversible thermodynamics methods

Authors

  • Виктория Викторовна Соколовская Odessa National Academy of Food Technologies 112 Kanatnaya str., Odesa, Ukraine, 65039, Ukraine https://orcid.org/0000-0002-7275-5061

DOI:

https://doi.org/10.15587/1729-4061.2015.47776

Keywords:

fouling, heat exchange surface, irreversible thermodynamics

Abstract

The source of reduced efficiency of the heat exchanger during operation are the fouling layers.

In the analysis of existing theoretical research methods of the fouling dynamics in heat exchangers, it was proposed to use a method of entropy production minimization for the growth analysis of the thermal resistance of the heat transfer wall with the fouling layers. At the design stage, the method has shown the possibility to determine the energy performance of the heat exchanger in the time function, to evaluate the irreversibility in the transition of the heat exchanger to the operation with different temperature conditions and qualitative compositions of flows, to assess the behavior of a single flow, without calculating the entire heat exchanger.

The developed mathematical model of the formation dynamics of solid fouling layers on the heat exchange surface has allowed to introduce the approximate to the real values additional thermal resistances into the calculation at the design stage. The model more accurately describes the heat transfer and fluid dynamics, taking into account the uncertainty of the solid fouling layer formation.

This approach to the fouling layer formation analysis allows to forecast the behavior of the individual flow in heat exchangers and improve repair schedule under the continuous operation of the heat exchanger.

Author Biography

Виктория Викторовна Соколовская, Odessa National Academy of Food Technologies 112 Kanatnaya str., Odesa, Ukraine, 65039

Associate professor, Candidate of technical science

Department of refrigerators, and air conditioning installations.

Institute of Refrigeration, and cryotechnology Ecoenergy them. VS Martynov

References

  1. Budarin, P. A. (2007). Razrabotka metodov diagnostirovaniya teploobmennogo oborudovaniya atomnyh elektrostancii na nalichie v nem otlozhenii. Moscow: OAO VNIIAM, 192.
  2. Mostafa, M. A. (2011). Fouling of Heat Transfer Surfaces, Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems. Available at: http://www.intechopen.com/books/heat-transfer-theoretical-analysis-experimentalinvestigations-and-industrial-systems/fouling-of-heat-transfer-surface
  3. Standards of the Tubular Exchanger Manufacturers Association, 9th ed., TEMA Inc. (2007). New York.
  4. Kern, D. Q., Seaton, R. E. (1959). A Theoretical Analysis of Thermal Surface Fouling, Brit. Chem. Eng., 4 (5), 258–262.
  5. Kern, D. Q., Seaton, R. E. (1959). Surface Fouling: How to Calculate Limits, Chem. Eng. Prog. 55 (6), 71–73.
  6. Watkinson, A. P. (1980). Process heat transfer: Some practical problems. The Canadian Journal of Chemical Engineering, 58 (5), 553–558. doi: 10.1002/cjce.5450580501
  7. Nesta, J., Bennett, C. A. (2005). Fouling Mitigation by Design, 6th International Conference on Heat Exchanger Fouling and Cleaning, Germany.
  8. Yang, M., Young, A., Niyetkaliyev, A., Crittenden, B. (2012). Modelling fouling induction periods. International Journal of Thermal Sciences, 51, 175–183. doi: 10.1016/j.ijthermalsci.2011.08.008
  9. Suárez, E., Paz, C., Porteiro, J., Eirís, A. (2010). Simulation of the fouling Layer evolution in heat transfer surfaces. V European Conference on Computational Fluid Dynamics ECCOMAS CFD. Lisbon, Portugal. Available at: http://www.researchgate.net/publication/268353316_SIMULATION_OF_THE_FOULING_LAYER_EVOLUTION_IN_HEAT_TRANSFER_SURFACES
  10. Fouling (2010). Wikipedia official web-site. Available at: http://en.wikipedia.org/wiki/Fouling (Last accessed: 11.02.2009).
  11. Prigozhin, I. (1960). Vvedenie v termodinamiku neobratimyh processov. Moscow: Izd-vo inostr. lit-ry, 160.
  12. Bejan, A. (1982). Entropy Generation through Heat and Fluid Flow. New York: John Wiley & Sons, 264.
  13. Le Goff, P., De Olivera, S., Schwarzer, B., Tondeur, D. (1991). Comparison of the entropic, exergetic and economic optima of a heat exchanger. Analysis of Thermal and Energy Systems, Proceedings of International Conference Athens. Athens, 105–116.
  14. Morosuk, T. V. (2004). Porous Media Theory as Basis for Model of Fouling Layers Formation in Heat Exchangers. Emerging Technologies and Techniques in Porous Media, 491–507. doi: 10.1007/978-94-007-0971-3_32
  15. Sokolovskaya, V. V. (2003). Metody prikladnoi termodinamiki v analize zagryazneniya teploobmennoi poverhnosti. Sb. nauch. trudov KGPI, 2 (19), 175–178.
  16. Bejan, A. (1988). Advanced Engineering Thermodynamics. New York: John Wiley & Sons, 782.
  17. Khan, W. A., Yovanovich, M. M., Culham, J. R. (2006). Optimization of microchannel heat sinks using entropy generation minimization method. Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium, 1–9. doi: 10.1109/stherm.2006.1625210
  18. Morozyuk, L. I., Sokolovskaya, V. V., Klimenko, A. A. (2003). Analiz otlozhenii na teploobmennoi poverhnosti protochnyh kondensatorov. Holodil'naya tehnika i tehnologiya, 3, 25–29.
  19. Shehter, R. S.; Pleshanov, A. S. (Ed.) (1971). Variacionnyj metod v inzhenernyh raschetah. Moscow: Mir, 291.

Published

2015-08-04

How to Cite

Соколовская, В. В. (2015). Analysis of the fouling in heat exchangers by irreversible thermodynamics methods. Eastern-European Journal of Enterprise Technologies, 4(8(76), 48–54. https://doi.org/10.15587/1729-4061.2015.47776

Issue

Section

Energy-saving technologies and equipment