Analyzing the overall performance of air coolers of the equipment for primary oil refining

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.50948

Keywords:

air cooler, heat flow, thermal potential energy, heat capacity / thermal capacity

Abstract

The paper presents findings on the efficiency of air coolers of the equipment for primary oil refining. The research has revealed that in the process of condensation of light fractions of oil products, air coolers emit into the environment a high-temperature exhaust gas, which should be used for regenerative heating in heat exchangers. Gases with a complex hydrocarbon composition are supplied with their thermal parameters at the operating temperatures. The heat capacity that can be used to transfer heat energy from hot to cold flows reaches 20 MW. This allows using the heat of the exhaust gases and saving primary energy expended in the production process in the facility for primary processing of oil. Temperature pressure in the air coolers can be reduced by regenerative use of their thermal potential energy for district heating.

Author Biography

Вікторія Ігорівна Кривда, Odessa National Polytechnic University 1 Shevchenko ave., Odessa, 65044

PhD

Department of electrical and energy management

References

  1. Maksimov, М. V., Kryvda, V. І. (2014). Ustanovka atmosfernoi vakuumnoi trubchatki dlya pidgotovky ta pervynnoi pererobky nafty [Installation of atmospheric vacuum trubchatka for preparation and primary oil refining]. Pаtent of Ukraine № 107027, МPКС10 G7/00. Appl. № а201303011. Filed 11.03.2013. Bull. № 21/2014, 5
  2. Saghafifar, M., Gadalla, M. (2015). Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler. Energy, 87, 663–677. doi: 10.1016/j.energy.2015.05.035
  3. Haijie Q., Weizhong L., Bo D., Zhihai Zh., Weiying Zh. (2014). Experimental study of the characteristic of frosting on low-temperature air cooler. Experimental Thermal and Fluid Science, 55, 106–114. doi: 10.1016/j.expthermflusci.2014.02.021
  4. Bolotin, S., Vager, B., Vasilijev, V. (2015). Comparative analysis of the cross-flow indirect evaporative air coolers. International Journal of Heat and Mass Transfer, 88, 224–235. doi: 10.1016/j.ijheatmasstransfer.2015.04.072
  5. Anisimov, S., Pandelidis, D., Jedlikowski, A. (2015). Performance study of the indirect evaporative air cooler and heat recovery exchanger in air conditioning system during the summer and winter operation. Energy, 89, 205–225. doi: 10.1016/j.energy.2015.07.070
  6. Liu, H., Nagano, K., Morita, A., Togawa, J., Nakamura, M. (2015). Experimental testing of a small sorption air cooler using composite material made from natural siliceous shale and chloride. Applied Thermal Engineering, 82, 68–81. doi: 10.1016/j.applthermaleng.2015.02.060
  7. Ou, G., Wang, K., Zhan, J., Tang. M., Liu. H., Jin. H. (2013)/ Failure analysis of a reactor effluent air cooler. Engineering Failure Analysis, 31, 387–393. doi: 10.1016/j.engfailanal.2013.02.025
  8. Zhelezny. V. P., Маrkvart. А. S.; Grigor’ev, B. А. (Ed.) (2011). Novie strukturno-additivnie metody prognozirovania teplofizicheskih svojstv uglevodorodov [The Methods of Prediction of the Properties for Substances on the Coexistence Curve Including Vicinity of the Critical Point] Aktual’nye voprosy issledovsnij plastovyh sistem mestorogdenij uglevodorodov: sb. nauch. Statej v 2 ch. Part 1. Gazprom VNIIGAZ, 207–218.
  9. Wrenick, S., Sutor, P., Pangilinan, H., Schwarz, E. E. (2005). Heat transfer properties of engine oils. World Tribology Congress III, 595–596. doi: 10.1115/wtc2005-64316
  10. Maksimov, M. V., Kryvda, V. I. (2011). Opredelenie minimal’nogo temperaturnogo napora mezhdu kholodnymi i goryachimi potokami dlya rekuperativnykh teploobmennikov ELOU-AVT [Determination of Minimal Temperature Pressure between Cold and Hot Flows for Recuperative Heat Exchangers REDA-VDU]. Kholodyl. tekhnika i tekhnolohiia, 3(131), 56–62.
  11. Salehi, M. M., Safarzadeh, M. A., Sahraei, E., Nejad, S. A. T. (2014). Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process. Journal of Petroleum Science and Engineering, 120, 86–93. doi: 10.1016/j.petrol.2014.05.017
  12. Li, X., Chan, C. W., Nguyen, H. H. (2013). Application of the Neural Decision Tree approach for prediction of petroleum production. Journal of Petroleum Science and Engineering, 104, 11–16. doi: 10.1016/j.petrol.2013.03.018
  13. Sun K., Ouyang H., Tian J., Wu Y., Du Zh. (2015). Experimental and numerical investigations on the eccentric vortex of the cross flow fan. International Journal of Refrigeration, 50, 146–155. doi: 10.1016/j.ijrefrig.2014.10.005

Published

2015-10-30

How to Cite

Кривда, В. І. (2015). Analyzing the overall performance of air coolers of the equipment for primary oil refining. Eastern-European Journal of Enterprise Technologies, 5(8(77), 29–34. https://doi.org/10.15587/1729-4061.2015.50948

Issue

Section

Energy-saving technologies and equipment