Development of cloud application efficiency evaluation criterion

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.50950

Keywords:

cloud computing, cloud application efficiency, cloud application scaling

Abstract

Using cloud computing allows to significantly improve the infrastructure support, reduce deployment time and faster adapt to changes in load with periodic peaks. The latter problem is solved by cloud application scaling that allows to change the number of involved computing resources depending on the cloud application use intensity. To solve the problem of selecting the best scaling strategy, a comparison mechanism of different scaling strategies with each other is needed. Such a comparison can be performed by calculating the developed efficiency criterion, which combines the assessment of used computing and reputational resources.

The developed criterion allows to calculate the cloud application efficiency based on information about the progress of a network request, the number of users and the cost of maintenance of cloud infrastructure. The criterion allows to compare and combine different metrics of cloud applications and can be used to compare the efficiency of cloud applications on the PaaS platform under different hosting settings using metrics that are specific to the PaaS platforms.

The paper shows that the efficiency of the brainstorming system Braintank combined with the information technology for cloud application scaling is by 10.5 % higher compared to other scaling technologies with a significance level of 0.001. Using the information technology for cloud application scaling has allowed to increase the values of the efficiency evaluation criterion from 8 to 12% on the simulator that reproduced the load on the World Cup website.

Author Biographies

Тамара Олександрівна Савчук, Vinnytsia National Technical University 95 Khmelnytsky Highway, Vinnytsya, Ukraine, 21021

PhD, Professor

Department of Computer Science

Андрій Валерійович Козачук, Vinnytsia National Technical University 95 Khmelnytsky Highway, Vinnytsya, Ukraine, 21021

Assistant

Department of Computer Science

References

  1. Sanderson, D. (2009). Programming google app engine: build and run scalable web apps on google's infrastructure. O'Reilly Media, Inc.
  2. Scaling Based on CPU or Load Balancing Serving Capacity. Google Cloud Platform. Available at: https://cloud.google.com/compute/docs/autoscaler/scaling-cpu-load-balancing
  3. Pocatilu, P., Alecu, F., Vetrici, M. (2010). Measuring the efficiency of cloud computing for e-learning systems. WSEAS Transactions on Computers, 9 (1), 42–51. Available at: http://wseas.us/e-library/transactions/computers/2010/89-159.pdf
  4. Klems, M., Nimis, J., TaiDo, S. (2009). Clouds compute? a framework for estimating the value of cloud computing. In Designing E-Business Systems. Lecture Notes in Business Information Processingg, 110–123. doi: 10.1007/978-3-642-01256-3_10
  5. Razumnikov, S. V. (2013). The analysis of existing methods for evaluating the effectiveness of information technology for cloud IT services. Modern problems of science and education, 3. Available at: http://www.science-education.ru/pdf/2013/3/405.pdf
  6. Yakushev, N. A. (2012). The calculation of the economic efficiency of cloud computing. Engineering Journal: science and innovation: electronic science and technology publication, (3) 3. Available at: http://engjournal.ru/articles/124/124.pdf
  7. Yatsko, A. M., Litvinchuk, Y. A. Bukovyna State Finance and Economics University, m. Chernivtsi Effect of cloud technologies for small and medium business in Ukraine. Available at: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/Nvbdfa_2014_26_57.pdf
  8. Lorido-Botrán, T., Miguel-Alonso, J., Lozano, J. A. (2012). Auto-scaling techniques for elastic applications in cloud environments. Department of Computer Architecture and Technology, University of Basque Country, Tech. Rep. EHU-KAT-IK-09, 12.
  9. Shannon, R. (1978). Simulation systems – the art and science. Moscow: Mir, 418.
  10. Emelyanov, N. Z., Partyka, T., Popo, Y. Y. (2007). Fundamentals of building a automate information systems: Uchebnoe posobye. Moscow: FORUM: INFRA-M, 416.
  11. Bukar, V. V., Olhovskaya, A. L. (2008). Efficiency of information systems: Textbook. instructions for students specialties "Economic Cybernetics" and "Adoption Intelectual system solutions". Kramatorsk: DSEA, 76.
  12. Sarvyn, A. A., Abakulyna, L. I., Gottschalk, O. A. (2003). Diagnosis and reliability of automate systems: lectures. SPb.: SZTU, 69.
  13. Townsend, K., Voigt, D. (1990). Design and Implementation of expert systems based on personal computers. Moscow: Finance and Statistics, 320.
  14. How a Slow Website Impacts Your Visitors and Sales. Available at: http://www.peer1.com/knowledgebase/how-slow-website-impacts-your-visitors-and-sales
  15. Nah, F. F. H. (2004). A study on tolerable waiting time: how long are Web users willing to wait? Behaviour & Information Technology, 23 (3), 153–163.
  16. How Loading Time Affects Your Bottom Line. Available at: https://blog.kissmetrics.com/loading-time/
  17. Menasce, D. A. (2002). Load testing of Web sites. IEEE Internet Computing, 6 (4), 70–74. doi: 10.1109/mic.2002.1020328
  18. The Internet Traffic Archive (1998). World Cup Web Site Access Logs. Available at: http://ita.ee.lbl.gov/html/contrib/WorldCup.html
  19. Kozachuk, A. (2014). Automated brainstorming "Braintank". Proceedings of the ninth international conference "Internet-Education-Science-2014". Vinnytsya.
  20. System of cloud automation CloudMonix. Available at: http://cloudmonix.com/
  21. Mohan, M. (2014). How Much Traffic Do You Need To Make $100,000 With Google AdSense. Available at: http://www.minterest.org/how-much-traffic-do-you-need-to-make-money/
  22. Dubina, I. N. (2006). Testing statistical hypotheses. Available at: http://www.ipiran.ru/frenkel/hypothesis_testing.pdf
  23. Gmurman, V. E. (2003). Probability theory and mathematical statistics. Moscow: Vestnik, 479.
  24. Sharyhin, O. A. (2012). Development approach to verify the adequacy of the decision-making model with fuzzy parameters. Optic electronic information and energy technologies, 1 (23), 59–61.
  25. Basic theory of reliability and diagnostics. Yaroslav-the-Wise Novgorod State University. Available at: http://www.novsu.ru/npe/files/um/1128/umk/OTND/index.htm

Published

2015-10-21

How to Cite

Савчук, Т. О., & Козачук, А. В. (2015). Development of cloud application efficiency evaluation criterion. Eastern-European Journal of Enterprise Technologies, 5(2(77), 20–26. https://doi.org/10.15587/1729-4061.2015.50950