Efficiency improvement of automatic control systems of power sources for self-contained drilling platforms

Authors

  • Владимир Анатольевич Жуков Admiral Makarov State University of Maritime and Inland Shipping Dvinskaya str., 5/7, Saint-Petersburg, Russia, 198035, Russian Federation https://orcid.org/0000-0002-4045-4504
  • Антон Александрович Жиленков Kerch state Maritime technological University Str. Ordzhonikidze, 82, Kerch, Russia, 298309, Russian Federation https://orcid.org/0000-0003-1555-1318
  • Олег Константинович Безюков Admiral Makarov State University of Maritime and Inland Shipping Dvinskaya str., 5/7, Saint-Petersburg, Russia, 198035, Russian Federation https://orcid.org/0000-0002-9205-2515
  • Иван Леонидович Титов Kerch state Maritime technological University Str. Ordzhonikidze, 82, Kerch, Russia, 298309, Russian Federation https://orcid.org/0000-0003-3406-0813

DOI:

https://doi.org/10.15587/1729-4061.2015.55464

Keywords:

gas-diesel generator, load, fluctuations, drilling platforms, generator, turbocharger, exchange fluctuations of power, modeling, diagnostics

Abstract

The topical problem of ensuring stable parallel operation of two or more gas-diesel generators as a part of the self-contained power system of offshore drilling platforms and water transport facilities is considered. The operating conditions of such a system as a part of the self-contained drilling platform, where sudden changes in electric network load make it impossible to use gas-diesel generators since the latter are characterized by high instability of speed are examined. Gas-diesel generator speed depends on the load on the generator bars, which causes the need to adjust the dynamic characteristics of speed regulators of gas-diesel generators, depending on the operation mode. Analysis of the operation of the self-contained power system of the drilling rig revealed that switching processes caused by connecting or disconnecting the loads lead to fluctuations in voltage and frequency, the spectrum of which is in the same frequency range as the fluctuation spectrum of GDGS, which gives rise to the exchange fluctuations of power between parallel operating generators.

Based on the experiment, the gas-diesel generator model, allowing to solve a wide range of problems concerning both management of self-contained power generation, and providing the necessary power quality indicators in power systems where the main power sources are parallel operating gas-diesel generator sets was developed.

The proposed dynamic model allows to take into account non-linear properties of the gas-diesel engine, considers the operation features of the turbocharger. In addition, the model allows to reconstruct the parameters of controllers depending on the load on the shaft.

Author Biographies

Владимир Анатольевич Жуков, Admiral Makarov State University of Maritime and Inland Shipping Dvinskaya str., 5/7, Saint-Petersburg, Russia, 198035

Doctor of Engineering, senior lecturer

The Professorial Chair of Theory and Design Shipp Internal Combustion Engines

Антон Александрович Жиленков, Kerch state Maritime technological University Str. Ordzhonikidze, 82, Kerch, Russia, 298309

Candidate of technical Sciences, associate Professor

The Department of ship electrical equipment and automation

Олег Константинович Безюков, Admiral Makarov State University of Maritime and Inland Shipping Dvinskaya str., 5/7, Saint-Petersburg, Russia, 198035

Doctor of  Engineering,  Professor

The Professorial Chair of  Theory and Design Shipp Internal Combustion Engines

Иван Леонидович Титов, Kerch state Maritime technological University Str. Ordzhonikidze, 82, Kerch, Russia, 298309

Graduate

The Department of ship electrical equipment and automation

References

  1. Greene, D. L. (2010). How consumers value fuel economy: a literature review. Assessment and Standards Division. Washington: Environmental Protection Agency. Available at: http://www.epa.gov/oms/climate/regulations/420r10008.pdf
  2. Mikajeljan, Je. A., Mikajeljan, R. Je., Dorohin, V. P. (1998). Perspektiva primenenija gazoturbinnyh agregatov v neftegazovoj promyshlennosti. Neftjanoe hozjajstvo, 6, 49–52.
  3. Mocohejn, B. I., Parfenov, B.M., Shpilevoj, V. M. (1999). Jelektroprivod, jelektrooborudovanie i jelektrosnabzhenie burovyh ustanovok. Tjumen', 263.
  4. Rejnike, M. Trenel, K., Herbst, Je. (1989). Puti povyshenija jekonomicheskoj jeffektivnosti operacij na staryh neftjanyh mestorozhdenijah. Neft', gaz i neftehimija za rubezhom, 7, 21–26.
  5. Chernyj, S. G., Zhilenkov, A. A. (2015). Ocenka nadezhnosti funkcionirovanija morskih burovyh platform. Avtomatizacija, telemehanizacija i svjaz' v neftjanoj promyshlennosti, 1, 30–36.
  6. Data showing the increasing consumer consideration of diesel and hybrid vehicles provided by CNW Research. Available at: http://www.cnwmarketingresearch.com/
  7. Chernyi, S. Zhilenkov, A. (2015). Analysis of complex structures of marine systems with attraction methods of neural systems. Metallurgical and Mining Industry, 1, 37–44.
  8. National Oilwell Varco. Available at: https://www.nov.com/ProductIndex.aspx.
  9. Can you afford the risk? The case for collaboration on risk mitigation for high-specification offshore assets. Available at: http://www.osp.ru/os/2010/08/13005222/
  10. Mocohejn, B. I. (1977). Jelektroprivod zarubezhnyh ustanovok dlja morskogo burenija. Obzor zarubezhnoj literatury. Moscow: VNIIOJeNG, 76.
  11. Mocohejn, B. I. (1991). Jelektrotehnicheskie kompleksy burovyh ustanovok. Moscow: Nedra, 253.
  12. Zhilenkov, A. A. Chernyi, S. G. (2015). Povyshenie jeffektivnosti sistem avtomaticheskogo upravlenija avtonomnymi burovymi ustanovkami za schet razrabotki metodov obespechenija ih sovmestimosti i integracii. Avtomatizacija, telemehanizacija i svjaz' v neftjanoj promyshlennosti, 4, 9–18.
  13. Zhilenkov, A., Chernyi, S. (2015). Investigation performance of marine equipment with specialized information technology. Energy Procedia, 100, 1247–1252. doi: 10.1016/j.proeng.2015.01.490
  14. Polonskij, V. I., Hajkin, A. B. (1976). Avtomatizirovannye grebnye jelektricheskie ustanovki. Moscow: Transport, 432.
  15. Chernyj, S. G. (2014). Primenenie tehnologii jekspertnogo ocenivanija v zadachah razvitija scenariev na primere transportno-jenergeticheskoj otrasli. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova, 4 (26), 139–150.
  16. Chernyi, S. (2015). The implementation of technology of multi-user client-server applications for systems of decision making support. Metallurgical and Mining Industry, 3, 60–65.
  17. Chernyi, S., Dorovskoy, V. (2014). Methodological foundation of effective deep-watermining in the Crimea. NTV SPbGPU, 3, 114–118.
  18. Energy information administration (2009). Light-duty diesel vehicles: market issues and potential energy and emissions impacts. Washington.

Published

2015-12-22

How to Cite

Жуков, В. А., Жиленков, А. А., Безюков, О. К., & Титов, И. Л. (2015). Efficiency improvement of automatic control systems of power sources for self-contained drilling platforms. Eastern-European Journal of Enterprise Technologies, 6(2(78), 4–10. https://doi.org/10.15587/1729-4061.2015.55464

Issue

Section

Industry control systems