Development of a mathematical model of the process of biological treatment of gaseous emissions

Authors

  • Ганна Юріївна Бахарєва National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-0765-9943
  • Олексій Валерійович Шестопалов National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-6268-8638
  • Олеся Миколаївна Філенко National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-0277-6633
  • Тетяна Сергіївна Тихомирова National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-9124-9757

DOI:

https://doi.org/10.15587/1729-4061.2015.56220

Keywords:

mathematical model, biological treatment of emissions, specific oxidation rate, concentration, harmful substance, bioreactor

Abstract

In experimental studies, the kinetic characteristics of methane oxidation by the immobilized microbial association in gaseous emissions were determined. The obtained quantitative values of specific oxidation rate of CH4 indicate a technological possibility of using the fluidized-bed bioreactor as the stage of the installation, designed for treatment of gaseous emissions from methane in drainage networks. It was found that the oxidation rate of CH4 varied from 60 ml/g·h in the region of minimum concentrations of CH4 in the medium to a maximum value of 260 ml/g·h. The presence of dependence of the specific oxidation rate of methane on its concentration in air was revealed.

Based on experimental studies, a mathematical description of the processes occurring in the reactor due to changes in the concentration of incoming pollutants was developed. It was found that persistent cyclic changes in the concentration at the bioreactor inlet will lead to the persistent cycle of changes in the pollution concentration at the outlet. The results of checking calculations show the transformation of fairly smooth concentration variations of the methane at the bioreactor inlet into dramatic changes in its concentration at the end of the biotreatment process, consideration of which is necessary in designing gas-treatment equipment.

Author Biographies

Ганна Юріївна Бахарєва, National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, associate professor

Department of occupational safety and environmental 

Олексій Валерійович Шестопалов, National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, associate professor

Department of chemical technique and industrial ecology

Олеся Миколаївна Філенко, National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, associate professor

Department of chemical technique and industrial ecology

Тетяна Сергіївна Тихомирова, National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, senior teacher

Department of chemical technique and industrial ecology

References

  1. Myakenkiy, V. I., Kurdish, I. K. (1991) Mikrobiologicheskoe okislenie metana ugolnyih shaht. Kyiv, Nauk. dumka, 148.
  2. Peinado, P. A., Moreno, J. J., Villaba, J. M., Gonzales-Reyes, J. A., Ortega, J. M., Mauricio, J. C. (2006). A new immobilization method and their application. Enzyme Microb Tech, 40, 79–84.
  3. Abbasi, T., Abbasi, S. A. (2011). Sources of Pollution in Rooftop Rainwater Harvesting Systems and Their Control. Critical Reviews in Environmental Science and Technology, 41 (23), 2097–2167. doi: 10.1080/10643389.2010.497438
  4. Yang, J., Spanjers, H., Jeison, D., Van Lier, J. B. (2013). Impact of Na + on Biological Wastewater Treatment and the Potential of Anaerobic Membrane Bioreactors: A Review . Critical Reviews in Environmental Science and Technology, 43 (24), 2722–2746. doi: 10.1080/10643389.2012.694335
  5. Papirio, S., Villa-Gomez, D. K., Esposito, G., Pirozzi, F., Lens, P. N. L. (2013). Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review. Critical Reviews in Environmental Science and Technology, 43 (23), 2545–2580. doi: 10.1080/10643389.2012.694328
  6. Oturan, M. A., Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44 (23), 2577–2641. doi: 10.1080/10643389.2013.829765
  7. Kennes, C., Rene, E. R., Veiga, M. C. (2009). Bioprocesses for air pollution control. Journal of Chemical Technology & Biotechnology, 84 (10), 1419–1436. doi: 10.1002/jctb.2216
  8. Shestopalov O. V., PItak I. V. (2014). Analysis of existent processes and devices of bioscrubbing gas emissions. Technology audit and production reserves, 3.5, 49–52.
  9. Seedorf, J. (2013). Biological exhaust air treatment systems as a potential microbial risk for farm animals assessed with a computer simulation. JJournal of the Science of Food and Agriculture, 93 (12), 3129–3132. doi: 10.1002/jsfa.6106
  10. Iranpour, R., Cox, H. H. J., Deshusses, M. A., Schroeder, E. D. (2005). Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environmental Progress, 24 (3), 254–267. doi: 10.1002/ep.10077
  11. Mohammad, B. T., Veiga, M. C., Kennes, C. (2007). Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors. Biotechnology and Bioengineering, 97 (6), 1423–1438. doi: 10.1002/bit.21350
  12. Rojo, N., Muñoz, R., Gallastegui, G., Barona, A., Gurtubay, L., Prenafeta-Boldú, F. X., Elías, A. (2012). Carbon disulfide biofiltration: Influence of the accumulation of biodegradation products on biomass development. Journal of Chemical Technology & Biotechnology, 87 (6), 764–771. doi: 10.1002/jctb.3743
  13. Malhautier, L., Cariou, S., Legrand, P., Touraud, E., Geiger, P., Fanlo, J. L. (2014). Treatment of complex gaseous emissions emitted by a rendering facility using a semi-industrial biofilter. Journal of Chemical Technology and Biotechnology. – . doi: 10.1002/jctb.4593
  14. Engesser, K.-H., Plaggemeier, T. (2008). Microbiological Aspects of Biological Waste Gas Purification. Biotechnology: Environmental Processes III, 11c, 275–302.
  15. Banerle, V., Fisher, H., Baroltki, D. (1986). Biologishe abluftreinigung mit hilfe eines menartigen permationsreuctoru. Stand-Reinhaitung der luft, 46 (5), 233–235.
  16. Don, T. A. (1983). Biofiltrutie – ein milieu lijhe effectieve en relatief geedjie mamier van luchtreingung. Innovative, 13 (53), 4–5.
  17. Gabrieland, D., Deshusses, M. A. (2004). Technical and economical analysis of the conversion of a ful-scale scrubber to a biotrickling filter for odour control. Water Sciense and Technology. Portland: IWAPublishing, 4, 309–318.
  18. Londong, J. (1992). Strategies for optimized nitrate reduction with primary denitrification. Water Sciense and Technology. Portland: IWAPublishing, 5-6, 1087–1096.
  19. Sotomayor, O. A. Z., Park, S. W., Garcia, C. (2001). A simulation benchmark to evaluate the performance of advanced control techniques in biological wastewater treatment plants. Brazilian Journal of Chemical Engineering, 18 (1). doi: 10.1590/s0104-66322001000100008
  20. Wentzel, M. C., Ekama, G. A., Marais, G. V. R. (1992). Processes and modeling of nitrification-denitrification biological excess phosphorus removal systems – a review. Water Sciense and Technology. Portland: IWAPublishing, 6, 59–82.
  21. Jan, R., Ng, V. L., Chen, X. G., Geng, A. L., Gouhd, W. D., Duan, H. Q., Ling, D. T., Koe, L. C. (2004). Bath experiment on H2S degradation by bacteria immobilised on activated carbons. Water Sciense and Technology. Portland: IWAPublishing, 4, 299–308.
  22. Barbosa, V. L., Dufol, D., Callan, J. L., Sneath, R., Stuetz, R. M. (2004). Hydrogen sulphide removal by activated sludge diffusion. Water Sciense and Technology. Portland: IWAPublishing, 4, 199–205.
  23. Krichkovska, L. V., Shestopalov, O. V., Bakhare- va, G. Y., Slis, K. V. (2013). Prozesi ta aparati biologichnoy ochistki ta dezodorazii gazopovitryanih vikidiv. Kharkiv: NTU «KhPI», 200.
  24. Krichkovska, L. V., Vaskovez, L. A., Gurenko, I. V. et. al. (2014). Proektni rishennya u rozrobzi aparativ biologichnoy ochistki gazopovitryanih vikidiv. Kharkіv: NTU «KhPI», 208.
  25. Baharеva А. Yu., Shestopalov O. V., Semenov E. O., Bukatenko N. O. (2015). Macrokinetic mathematical model development of biological treatment process of gasiform emissions. ScienceRise, 2/2(7) , 12–15. doi: 10.15587/2313-8416.2015.37057
  26. Kuznetsov, S. I., Dubinina, G. A. (1989). Metodyi izucheniya vodnyih mikroorganizmov. Moscow: Nauka, 286.

Published

2015-12-22

How to Cite

Бахарєва, Г. Ю., Шестопалов, О. В., Філенко, О. М., & Тихомирова, Т. С. (2015). Development of a mathematical model of the process of biological treatment of gaseous emissions. Eastern-European Journal of Enterprise Technologies, 6(6(78), 53–61. https://doi.org/10.15587/1729-4061.2015.56220