The use of convolution operators in the tasks of edge detection

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.56548

Keywords:

the Kenny algorithm, the Sobel operator, the Roberts operator, the Prewitt operator, detection of the edges, gradient

Abstract

Despite the prevalence of the Kenny algorithm in the edge detection, insufficient attention has been paid to the optimal selection of the convolution matrix. The paper describes typical algorithms to detect the object edges in the image and use the peculiarities of convolution operators in the Kenny algorithm. The research uses a base image size of 13,225 units. Thus, the experiments have proved that the Sobel operator is optimal, in general, for the Kenny algorithm. We have also considered the Roberts operator and the Previtt operator as alternatives and proved that they effectively process individual cases but generally give worse results. We have made a comparative analysis of advantages and disadvantages of all the operators. The paper presents an example of a detailed calculation of the gradient by using the Sobel operator in the Kenny algorithm after the preceding use of the Gaussian filter. The result of the study is verification of the  optimal choice of the Sobel operator for the Kenny algorithm.

Author Biographies

Сергій Олександрович Петров, Sumy State University Rimskogo-Korsakova 2, Sumy, Ukraine

Ph.D.

Department of Computer Science

Ігор Олександрович Марченко, Sumy State University Rimskogo-Korsakova 2, Sumy, Ukraine

post-graduate student

Department of Computer Science

Борис Олександрович Дібров, Sumy State University Rimskogo-Korsakova 2, Sumy, Ukraine

post-graduate student

Department of Computer Science

References

  1. Forsajt, D., Pons, Zh. (2004). Komp'juternoe zrenie. Sovremennyj podhod. Moscow: Vil'jams, 928.
  2. Szeliski, R. (2011). Computer Vision: Algorithms and Applications. London: Springer, 812. doi: 10.1007/978-1-84882-935-0
  3. Bilyns'kyj, J. (2010). Metody obrobky zobrazhen' v komp’juteryzovanyh optyko-elektronnyh systemah. Vinnycja: VNTU, 272.
  4. Li, J., Ding, S. (2011). A Researchon Improved Canny Edge Detection Algorithm. Communications in Computer and Information Science, 228, 102–108. doi: 10.1007/978-3-642-23223-7_13
  5. Harris, C., Stephens, M. (1988). A Combined Cornerand Edge Detector. Proceedings of the Alvey Vision Conference. Plessey: Plessey Research Roke Manor, 23.1–23.6. doi: 10.5244/c.2.23
  6. Hines, E. (1983). Application of edge detection techniques to detection of the bright band in radar data. Image and Vision Computing, 1 (4), 221–226. doi: 10.1016/0262-8856(83)90021-5
  7. Canny, J. F. (1986). A computational approach to edge detection. IEEE Trans Pattern Analysis and Machine Intelligence, PAMI-8 (6), 679–698. doi: 10.1109/tpami.1986.4767851
  8. Conroy, L., Yeung, R., Quirk, S., Phan, T., Smith, W. L. (2015). Retrospective evaluation of visually monitored deep inspiration breath hold for breast cancer patients using edge detection. World Congress on Medical Physics and Biomedical Engineering. Toronto, Canada. doi: 10.1007/978-3-319-19387-8_143
  9. Harun, M. N. H., Nabilah, I., Shazilah, A. N. (2015). Comparative study of edge detection algorithm: vessel wall elasticity measurement for deep vein thrombosis diagnosis. ARPN Journal of Engineering and Applied Sciences, 10 (19), 8635–8641. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2015/jeas_1015_2772.pdf
  10. Ramamurthy, B., Chandran, K. R. (2011). Content based Image Retrieval for Medical Images using Canny Edge Detection Algorithm. International Journal of Computer Applications, 17 (6), 32–37. doi: 10.5120/2222-2831
  11. Law, M. W. K., Chung, A. C. S. (2007). Weighted Local Variance-Based Edge Detection and Its Application to Vascular Segmentation in Magnetic Resonance Angiography. IEEE Transactions on Medical Imaging, 26 (9), 1224–1241. doi: 10.1109/tmi.2007.903231
  12. Hemalatha, R., Deepa, E., Sasipriya, R. (2015). Automated Driving Vehicle Using DigitalImage Processing. IJISET - International Journal of Innovative Science, Engineering and Technology, 2 (9), 445–446. Available at: http://ijiset.com/vol2/v2s9/IJISET_V2_I9_55.pdf
  13. Panetta, K., Wharton, E., Agaian, S. S. (2008). Logarithmic Edge Detection with Applications. Journal of Computers, 3 (9), 11–19. doi: 10.4304/jcp.3.9.11-19
  14. Bradski, G., Kaehler, A. (2008). Learning OpenCV. O’ReillyMedia, 580. Available at: http://www.cse.iitk.ac.in/users/vision/dipakmj/papers/OReilly%20Learning%20OpenCV.pdf
  15. Labeled Faces in the Wild. Available at: http://vis-www.cs.umass.edu/lfw/
  16. Steger, C., Ulrich, M., Wiedemann, C. (2008). Machine Vision Algorithms and Applications. Wiley-VCH, 360.
  17. Johnson, S. (2006). On Digital Photography. O’Reilly Media, 320.
  18. Lysak, N. V., Mironova, Ju. V., Marchenko, I. O., Petrov, S. O. (2015). Pidvyshhennja jakosti rozpiznavannja metodom Violy-Dzhonsa v zadachah informacijnoi' bezpeky pidpryjemstva shljahom poperedn'oi' obrobky zobrazhen'. Optyko-elektronni informacijno-energetychni tehnologii', 29 (1), 70–75

Published

2015-12-22

How to Cite

Петров, С. О., Марченко, І. О., & Дібров, Б. О. (2015). The use of convolution operators in the tasks of edge detection. Eastern-European Journal of Enterprise Technologies, 6(4(78), 27–31. https://doi.org/10.15587/1729-4061.2015.56548

Issue

Section

Mathematics and Cybernetics - applied aspects