The study of uneven temperature field in billet electrodes during their graphitization in the castner furnace

Authors

  • Сергій Володимирович Лелека National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-4372-9454
  • Тарас Валерійович Лазарєв National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-8260-1683
  • Анатолій Юрійович Педченко National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-5065-5003
  • Денис Григорович Швачко National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-6031-1490

DOI:

https://doi.org/10.15587/1729-4061.2015.56642

Keywords:

graphitization, electrode products, gasification, direct heating furnace, electric contact gasket, current shunt

Abstract

We have experimentally studied the thermal and electric state of the Castner furnace, which allows adjusting and verifying the numerical data-based model. The analyzed physical experiment findings show that the billets which contact with a large volume of insulation material within a certain temperature range have a slightly reduced heating rate, which is probably due to the fact that some heat is spent on evaporation and further gasification of the carbon material.

We have also found that the use of a ring-shaped inter-electrode gasket affects the temperature distribution in the fore part of the electrode billets since the shape of the gasket allows reducing the temperature difference along the axis of the central pieces. The obtained values of the water temperature spent on cooling of the electrical shunt allowed calculating an effective coefficient for the heat transfer from the surface of the graphite shunt to the cooling belt.

The study has proved that the effective heat transfer coefficient has a constant value till the shunt surface temperature reaches the rate of 140 °C. If the temperature exceeds this level, the coefficient value grows because of the lower thermal contact resistance between the cooling belt and the graphite shunt due to the thermal expansion of the latter.

Author Biographies

Сергій Володимирович Лелека, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Candidate of Science, postdoctoral research fellow

Research center «Resource-saving technologies»

Тарас Валерійович Лазарєв, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Candidate of Science, postdoctoral research fellow

The chemical, polymer and silicate machine engineering department

Анатолій Юрійович Педченко, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

The chemical, polymer and silicate machine engineering department

Денис Григорович Швачко, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Assistant

The chemical, polymer and silicate machine engineering department

References

  1. Chalyh, E. F. (1990). Oborudovanie jelektrodnyh zavodov. Moscow: Metallurgija, 238.
  2. Adams, R., Frohs, W., Jäger, H. et al. (2007). Graphite electrode and needle coke development. Carbon 2007. Conference. Seattle, Washington, USA.
  3. Sannikov, A. K., Somov, A. B., Kliuchnikov, V. V. (1985). Proizvodstvo jelektrodnoj produkcii. Moscow: Metallurgija, 129.
  4. Janerka, K., Bartocha, D., Szajnar, J., Jezierski J. (2010). The carburizer influence on the crystallization process and the microstructure of synthetic cast iron. Archives of Metallurgy and Materials, 55 (3), 851–859.
  5. Panov, E., Pedchenko, A. (2014). Reasonable application analysis of Casnter graphitization furnaces according to the demands of modern market. Technology Audit And Production Reserves, 4 (1 (18)), 57–60. doi: 10.15587/2312-8372.2014.26434
  6. Leleka, S. V., Panov, E. N., Karvatskii, A. Ya., Kutuzov, S. V., Pulynec, I. V., Chirka, T. V., Lazarev, T. V. (2014). Teplojelektricheskoe sostojanie pechej grafitirovanija Achesona. Kyiv: NTUU «KPI», 238.
  7. Kuznetsov, D. M., Korobov, V. K. (2001). A comparison of properties of electrodes graphitized by the Acheson and Castner methods. Ogneupory i Tekhnicheskaya Keramika, 10, 16–20.
  8. Jäger, H., Frohs, W., Banek, M. et al. (2010). Carbon, 4. Industrial Carbons. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, 40. doi: 10.1002/14356007.n05_n03
  9. Panov, E. N., Kutuzov, S. V., Karvackij, A. Ja et al. (2011). Jenergosberezhenie pri proizvodstve jelektrodnoj produkcii. Cvetnye metally – 2011: 3-j mezhdunar. kongr. Krasnojarsk.
  10. Frohs, W., Roeßner, F. (2015). Expansion of carbon artifacts during graphitization. TANSO, 267, 77–83. doi: 10.7209/tanso.2015.77
  11. Wang, Y.-J. (2010). Temperature calculation during lengthwise graphitization process. Carbon Tech, 29 (5), 47–48.
  12. Xu, H.-F., Liu, C.-D., Wang Y.-B. (2009). Numerical simulation of heat field in lengthwise graphitization furnace during heating process. Carbon Tech, 28 (1), 1–3.
  13. Kutuzov, S. V., Buryak, V. V., Derkach, V. V., Panov, E. N., Karvatskii, A. Ya., Vasilchenko, G. N., Leleka, S. V., Chirka, T. V., Lazarev, T. V. (2014). Making the Heat-Insulating Charge of Acheson Graphitization Furnaces More Efficient. Refractories and Industrial Ceramics, 55 (1), 15–16.
  14. Panov, E. N., Leleka, S. V., Korzik M. V. (2005). Kompleks sbora dannyh dlja vysokotemperaturnyh promyshlennyh agregatov. PiCAD, 2, 28–30.

Published

2015-12-25

How to Cite

Лелека, С. В., Лазарєв, Т. В., Педченко, А. Ю., & Швачко, Д. Г. (2015). The study of uneven temperature field in billet electrodes during their graphitization in the castner furnace. Eastern-European Journal of Enterprise Technologies, 6(5(78), 28–32. https://doi.org/10.15587/1729-4061.2015.56642

Issue

Section

Applied physics