Study of the effect of ion nitriding regimes on the structure and hardness of steel

Authors

  • Oleg Sobol National Technical University "Kharkiv Polytechnic Institute" 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-5156-7371
  • Anatoly Andreev Kharkiv Institute of Physics and Technology 1 Akademicheskaya str., Kharkiv, Ukraine, 61108, Ukraine
  • Vyacheslav Stolbovoy Kharkiv Institute of Physics and Technology 1 Akademicheskaya str., Kharkiv, Ukraine, 61108, Ukraine
  • Sergey Knyazev National Technical University "Kharkiv Polytechnic Institute" 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine
  • Alexander Barmin National Technical University "Kharkiv Polytechnic Institute" 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-7507-7596
  • Natalya Krivobok National Technical University "Kharkiv Polytechnic Institute" 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.63659

Keywords:

ion nitriding, austenitic, S phase, chromium nitride, diffraction spectra, hardness

Abstract

Application of low-temperature plasma nitriding of non-self-sustained arc low-pressure discharge allows solving a critical problem of increasing the stainless steel hardness and getting a wide range of structural states, including metastable at low temperatures, such as the S-phase (nitrided austenite).

Using ion nitriding at a pressure of PN=(4…40)·10-4 Torr and constant negative potentials –600, –900 and –1300 V, the possibilities of structural engineering in the ion-induced surface modification and its influence on hardness are examined.

When using ion nitriding regimes, the S-phase formation at the lowest pressure is revealed, the grating spacing of 0.381 nm is determined, which corresponds to the formula FeN0,4, and a large width of the diffraction reflections of the S-phase evidences fragmentation and high microstrain of the initial austenite in the S-phase formation. It is shown that the highest hardness can be obtained when the composition of CrN, S and the original austenitic phase is formed in the nitriding process, which is achieved under the following nitriding regimes: the pressure of 4·10-3 Torr and relatively low negative bias potential of 600 V.

Author Biographies

Oleg Sobol, National Technical University "Kharkiv Polytechnic Institute" 21 Frunze str., Kharkiv, Ukraine, 61002

Doctor of physical and mathematical sciences, Рrofessor, Head of the Department

Department of materials science

Anatoly Andreev, Kharkiv Institute of Physics and Technology 1 Akademicheskaya str., Kharkiv, Ukraine, 61108

Doctor of Technical Sciences, Senior Researcher

National Science Center

Vyacheslav Stolbovoy, Kharkiv Institute of Physics and Technology 1 Akademicheskaya str., Kharkiv, Ukraine, 61108

PhD, Researcher

National Science Center

Sergey Knyazev, National Technical University "Kharkiv Polytechnic Institute" 21 Frunze str., Kharkiv, Ukraine, 61002

Engineer

Department of materials science

Alexander Barmin, National Technical University "Kharkiv Polytechnic Institute" 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of materials science

Natalya Krivobok, National Technical University "Kharkiv Polytechnic Institute" 21 Frunze str., Kharkiv, Ukraine, 61002

Research engineer II category

Department of materials science

References

  1. Aksenov, I. I., Aksenov, D. S., Andreev, A. A., Belous, V. A., Sobol, O. V. (2015). Vacuum arc coating. Technology, materials, structure, properties. Kharkiv: NNC, HFTI, 379.
  2. Sobol’, O. V. (2007). Nanostructural ordering in W-Ti-B condensates. Physics of the Solid State, 49 (6), 1161–1167. doi: 10.1134/S1063783407060236
  3. Andreev, A. A., Sablev, L. P., Grigoriev, S. N. (2010). Vacuumno-dugovye pokrytiya. Kharkiv: NNC HFTI, 317.
  4. Manova, D., Hirsch, D., Richter, E., Mändl, S., Neumann, H., Rauschenbach, B. (2007). Microstructure of nitrogen implanted stainless steel after wear experiment. Surface and Coatings Technology, 201 (19-20), 8329–8333. doi: 10.1016/j.surfcoat.2006.10.060
  5. Gerasimov, S. A., Gress, M. A., Lapteva, V. G., Mukhin, G. G., Bayazitova, V. V. (2008). Metallovedenie i termicheskaya obrabotka metallov, 2 (632), 34–37.
  6. Pastuh, I. M. (2006). Teoriya i praktika bezvodorodnogo azotirovaniya v tleushchem razryade. Kharkiv: NNC HFTI, 364.
  7. Fernandes, B. B., Mändl, S., Oliveira, R. M., Ueda, M. (2014). Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science, 310, 278–283. doi: 10.1016/j.apsusc.2014.04.142
  8. Gorokhovsky, V., Belluz, P. D. B. (2013). Ion treatment by low pressure arc plasma immersion surface engineering processes. Surface and Coatings Technology, 215, 431–439. doi: 10.1016/j.surfcoat.2012.10.069
  9. Wei, C. C. (2012). Analyses of Material Properties of Nitrided AISI M2 Steel Treated by Plasma Immersion Ion Implantation (PIII) Process. Advanced Science Letters, 12 (1), 148–154. doi: 10.1166/asl.2012.2807
  10. Köster, K., Kaestner, P., Bräuer, G., Hoche, H., Troßmann, T., Oechsner, M. (2013). Material condition tailored to plasma nitriding process for ensuring corrosion and wear resistance of austenitic stainless steel. Surface and Coatings Technology, 228, 615–618. doi: 10.1016/j.surfcoat.2011.10.059
  11. Sobol, O. V., Andreev, A. A., Shepel, S. V., Dmitrik, V. V., Pogrebnoii, N.,A., Ishchenko, G. I., Knyazev, S. A., Pinchuk, N. V., Meiilekhov, A. A., Stolbovoii, V. A., Sologub, M. O., Krivobok, N. A. (2015). Ispolzovanie strukturnogo podhoda pri otsenke effektivnosti gazovogo i ionnogo azotirovaniya staleii. Fizicheskaya ingeneriya poverkhnosti, 13 (2), 202–208.
  12. Andreev, A. A., Volosova, M. A., Gorban, V. F., Grigoriev, S. N., Kidanova, N. V., Sobol', O. V., Stolbovoy, V. A., Filchikov, V. Ye. (2013). The use of pulsed ion stimulation to modify the stressed structure state and mechanical properties of vacuum-arc TiN coatings. Metallofizika i Noveishie Tekhnologii, 35 (7), 953–963
  13. Manova, D., Scholze, F., Mändl, S., Neumann, H. (2011). Nitriding of austenitic stainless steel using pulsed low energy Ion implantation. Surface and Coatings Technology, 205, 286–289. doi: 10.1016/j.surfcoat.2011.02.010
  14. Fewell, M. P., Priest, J. M. (2008). High-order diffractometry of expanded austenite using synchrotron radiation. Surface and Coatings Technology, 202 (9), 1802–1815. doi: 10.1016/j.surfcoat.2007.07.062
  15. Campos, M., de Souza, S. D., de Souza, S., Olzon-Dionysio, M. (2011). Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Mössbauer spectroscopy. Hyperfine Interactions, 203 (1-3), 105–112. doi: 10.1007/s10751-011-0351-3
  16. Williamson, D. L., Ozturk, O., Wei, R., Wilbur, P. J. (1994). Metastable phase formation and enhanced diffusion in f.c.c. alloys under high dose, high flux nitrogen implantation at high and low ion energies. Surface and Coatings Technology, 65 (1-3), 15–23. doi: 10.1016/s0257-8972(94)80003-0
  17. Öztürk, O., Williamson, D. L. (1995). Phase and composition depth distribution analyses of low energy, high flux N implanted stainless steel. Journal of Applied Physics, 77 (8), 3839. doi: 10.1063/1.358561
  18. Fossati, A., Borgioli, F., Galvanetto, E., Bacci, T. (2006). Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions. Corrosion Science, 48 (6), 1513–1527. doi: 10.1016/j.corsci.2005.06.006
  19. Mändl, S., Manova, D., Neumann, H., Pham, M. T., Richter, E., Rauschenbach, B. (2005). Correlation between PIII nitriding parameters and corrosion behaviour of austenitic stainless steels. Surface and Coatings Technology, 200 (1-4), 104–108. doi: 10.1016/j.surfcoat.2005.02.084
  20. Li, G., Peng, Q., Li, C., Wang, Y., Gao, J., Chen, S. et. al. (2008). Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel. Surface and Coatings Technology, 202(12), 2749–2754. doi: 10.1016/j.surfcoat.2007.10.002
  21. Azarenkov, N. A., Sobol, O. V., Pogrebnyak, A. D., Beresnev, V. M. (2011). Ingeneriya vacuumno-plazmennykh pokrytii. Kharkiv: V. N. Karazin Kharkiv National University, 344.
  22. Sobol’, O. V., Andreev, A. A., Stolbovoi, V. A., Fil’chikov, V. E. (2012). Structural-phase and stressed state of vacuum-arc-deposited nanostructural Mo-N coatings controlled by substrate bias during deposition. Technical Physics Letters, 38 (2), 168–171. doi: 10.1134/S1063785012020307
  23. Mändl, S., Dunkel, R., Hirsch, D., Manova, D. (2014). Intermediate stages of CrN precipitation during PIII nitriding of austenitic stainless steel. Surface and Coatings Technology, 258, 722–726. doi: 10.1016/j.surfcoat.2014.08.007
  24. Sobol’, O. V., Andreev, A. A., Grigoriev, S. N., Gorban’, V. F., Volosova, M. A., Aleshin, S. V., Stolbovoi, V. A. (2012). Effect of high-voltage pulses on the structure and properties of titanium nitride vacuum-arc coatings. Metal Science and Heat Treatment, 54 (3-4), 195–203. doi: 10.1007/s11041-012-9481-8

Published

2016-04-25

How to Cite

Sobol, O., Andreev, A., Stolbovoy, V., Knyazev, S., Barmin, A., & Krivobok, N. (2016). Study of the effect of ion nitriding regimes on the structure and hardness of steel. Eastern-European Journal of Enterprise Technologies, 2(5(80), 63–68. https://doi.org/10.15587/1729-4061.2016.63659