Investigation of spectral characteristics of cholesteric liquid crystals at carbohydrates influence

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.65481

Keywords:

spectral studies, cholesteric liquid crystals, carbohydrates, primary converter, optical sensor

Abstract

The concept of cholesteric liquid crystal interaction with carbohydrates to create the active medium of the primary sensor converter is considered. It is proposed to use the cholesteric liquid crystal with the reflection band in the visible spectrum as the sensing element of optical carbohydrate sensors. The information signal in such sensors is formed by selective reflection (transmission) of light in the sensitive medium of primary converters of optical sensors. The analysis of the data shows that the reason for the areas of abnormal behavior of the pitch at high concentrations of the aqueous carbohydrate solution is the interface. It is shown that there is a general tendency to reduce the pitch of the supramolecular helical structure with increasing concentration of aqueous solutions in all investigated carbohydrates. Furthermore, the maximum sensitivity of the cholesteric matrix is observed at low concentrations of the solution used for their detection. The highest spectral sensitivity is observed in aqueous fructose solutions.

Author Biographies

Mariya Vistak, Danylo Halytsky Lviv National Medical University 69 Pekarska str., Lviv, Ukraine, 79010

Candidate of physics and mathematical science, Associate professor

Department of Biophysics 

Vasyl Dmytrakh, Danylo Halytsky Lviv National Medical University 69 Pekarska str., Lviv, Ukraine, 79010

Teacher

Department of Biophysics 

Yulia Horbenko, Ivan Franko National University of Lviv 8 Kyrylo and Mefodiya str., Lviv, Ukraine, 79005

Junior Researcher

Department of Physical and Colloid Chemistry

Orest Sushynskyi, Lviv Polytechnic National University 13 Bandery str., Lviv, Ukraine, 79013

Doctor of technical science, Associate professor

Department of electronic devices 

References

  1. Dudchenko, O. Ye., Pyeshkova, V. N., Soldatkin, A. A., Dzyadevych, S. V. (2014). Biosensors for determination of the most common carbohydrates. Sensor Electronics and Мicrosystem Technologies, 11 (4), 81–96.
  2. Dung, N. Q., Patil, D., Duong, T., Jung, H., Kim, D., Yoon, S.-G. (2012). An amperometric glucose biosensor based on a GOx-entrapped TiO2–SWCNT composite. Sensors and Actuators B: Chemical, 166-167, 103–109. doi: 10.1016/j.snb.2012.01.008
  3. Li, F., Song, J., Li, F., Wang, X., Zhang, Q., Han, D. et. al. (2009). Direct electrochemistry of glucose oxidase and biosensing for glucose based on carbon nanotubes SnO2-Au composite. Biosensors and Bioelectronics, 25 (4), 883–888. doi: 10.1016/j.bios.2009.08.044
  4. Palanisamy, S., Cheemalapati, S., Chen, S.-M. (2014). Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite. Materials Science and Engineering: C, 34, 207–213. doi: 10.1016/j.msec.2013.09.011
  5. Jang, H. D., Kim, S. K., Chang, H., Roh, K.-M., Choi, J.-W., Huang, J. (2012). A glucose biosensor based on TiO2–Graphene composite. Biosensors and Bioelectronics, 38 (1), 184–188. doi: 10.1016/j.bios.2012.05.033
  6. Zafar, M. N., Safina, G., Ludwig, R., Gorton, L. (2012). Characteristics of third-generation glucose biosensors based on Corynascus thermophilus cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working under physiological conditions. Analytical Biochemistry, 425 (1), 36–42. doi: 10.1016/j.ab.2012.02.026
  7. Campuzano, S., Loaiza, Ó. A., Pedrero, M., de Villena, F. J. M., Pingarrón, J. M. (2004). An integrated bienzyme glucose oxidase–fructose dehydrogenase–tetrathiafulvalene-3-mercaptopropionic acid–gold electrode for the simultaneous determination of glucose and fructose. Bioelectrochemistry, 63 (1-2), 199–206. doi: 10.1016/j.bioelechem.2003.10.019
  8. Ayyub, O. B., Ibrahim, M. B., Briber, R. M., Kofinas, P. (2013). Self-assembled block copolymer photonic crystal for selective fructose detection. Biosensors and Bioelectronics, 46, 124–129. doi: 10.1016/j.bios.2013.02.025
  9. Egawa, Y., Seki, T., Takahashi, S., Anzai, J. (2011). Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Materials Science and Engineering: C, 31 (7), 1257–1264. doi: 10.1016/j.msec.2011.05.007
  10. Raj, V., Vijayan, A. N., Joseph, K. (2014). Naked eye detection of infertility using fructose blue–A novel gold nanoparticle based fructose sensor. Biosensors and Bioelectronics, 54, 171–174. doi: 10.1016/j.bios.2013.10.073
  11. Koncki, R., Lenarczuk, T., Radomska, A., Głąb, S. (2001). Optical biosensors based on Prussian Blue films. Analyst, 126 (7), 1080–1085. doi: 10.1039/b103044m
  12. Prystay, T. V., Mykytyuk, Z. M., Sushynskyi, O. Y., Fechan, A. V., Vistak, M. V. (2015). Nanocomposite based on a liquid crystal doped with aluminum nitride nanotubes for optical sensor of sulfur dioxide. Journal of the Society for Information Display, 23 (9), 438–442. doi: 10.1002/jsid.380
  13. Hotra, Z., Mykytyuk, Z., Sushynskyy, O., Shymchyshyn, O., Petryshak, V. (2012). Sensitive element of carbon monoxide sensor based on liquid crystals doped by nanosized Fe. Annual journal of electronics, 6, 99–102.
  14. Hubskyi, Yu. І. (2000). Biological chemistry. Kyiv-Ternopil: Ukrmedbook, 508.

Downloads

Published

2016-04-27

How to Cite

Vistak, M., Dmytrakh, V., Horbenko, Y., & Sushynskyi, O. (2016). Investigation of spectral characteristics of cholesteric liquid crystals at carbohydrates influence. Eastern-European Journal of Enterprise Technologies, 2(6(80), 18–22. https://doi.org/10.15587/1729-4061.2016.65481

Issue

Section

Technology organic and inorganic substances