Study of fire–extinguishing efficiency of environmentally friendly binary aerosol-nitrogen mixtures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.72399

Keywords:

nitrogen, gases phlegmatizers, inhibitors of combustion, aerosol fire extinguishing

Abstract

It was theoretically grounded and experimentally confirmed that adding nitrogen to the aerosol of inorganic potassium salts considerably increases efficiency of the fire­extinguishing of the obtained binary mixture. As a result of the studies we determined that the addition of nitrogen to the aerosol reduces the fire­extinguishing concentration of the components of the final binary mixture by 30 %. Experiments confirmed that the optimal ratio of the components in the mixture of a binary mixture, which consists of the aerosol is 10 g/m3 and nitrogen – 12.1 %. It is fire­extinguishing for the diffusion flame of heptane and simultaneously provides life­safe concentration of oxygen.  It was found that high efficiency of binary aerosol nitrogen mixture is achieved due to the synergy of the components of the mixture. We defined the value of intensity and decrease in the temperature of the diffusion and kinetic flame with its presence in the aerosol­nitrogen mixture. The study of fire­extinguishing efficiency of the aerosol­nitrogen mixtures is necessary to determine the conditions and methods of the fire extinguishing by the mixture in closed areas.

Received dependencies and specifications of aerosol­nitrogen mixtures can be the foundation for the creation of ecologically clean, cheap, and simple in the production and operation fire­fighting tools with high fire­suppression efficiency, which can be used for the fire suppression in the areas of temporary stay of people and living organisms without an apparent damage to them as a result of volumetric fire extinguishing by the described mixtures.

Author Biographies

Volodymyr Balanyuk, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79000

PhD, associate professor, сolonel of service of civil protection

Department Postgraduate School and doctorate

Nazariy Kozyar, Main Control service emergencies Ukraine in Kiev Volodymyrska str., 13, Kyiv, Ukraine, 01601

PhD, deputy chief, lieutenant colonel of service of civil protection

Olexandr Garasyumyk, Main Control service emergencies Ukraine in Kiev Volodymyrska str., 13, Kyiv, Ukraine, 01601

Postgraduate student, major of service of civil protection

References

  1. Agafonov, V. V., Kopylov, N. P. (1999). Ustanovki aerozolnogo pozharotusheniya: Elementy i kharakteristiki. proyektirovaniye. montazh i ekspluatatsiya. Moscow: VNIIPO, 232.
  2. Agafonov, V. V., Kopylov, N. P. (2001). Obosnovaniye mekhanizma podavleniya gazofaznogo goreniya ayerozolyami i puti povysheniya ikh ognetushashchey sposobnosti. Moscow: VNIIPO, 91–96.
  3. Korostelev, V. G. (2002). Aerozolgeneriruyushchiye pozharotushashchiye sostavy. Osnovnyye tipy sostavov i optimalne usloviya ikh primeneniya. Pozharovzryvobezopasnost, 1, 61–66.
  4. Raev, V. I. (1998). Aerozolnyiy ognetushaschiy sostav. Pat. # 2121857. Ros. Federatsiya, Kl. A62D 1/00, 1/02.
  5. Kіotskiy protokol do Ramkovoi konventsіi Organіzatsіi Ob'ednanikh Natsіy pro zmіnu klіmatu (ukr/ros) OON (1997). Protokol. Mіzhnarodniy dokument vіd 11.12.1997.
  6. Monrealskiy protokol pro rechovini. shcho ruynuyut ozonoviy shar OON (1987). Protokol. Akt. Rezolyutsіya vіd 16.09.1987.
  7. Tapscott, R. E., Moore, T. A., Mather, J. D. (1998). Halon replacement research – a historical review of technical progress and regulatory decision points. Halon Options Technical Working Conference, 17–22.
  8. Taylor, G. (2001). Time is Up for Halons. Industrial Fire Journal, 41, 63–64, 67–68.
  9. U.S. Department of Transportation Federal Aviation (2002). Administration Final Report Options to the Use of Halons for Aircraft Fire Suppression Systems. Update.
  10. Book, N. L., Sitton, O. C., Ludlow, D. K. (2000). Inerting or purging. Instructional module. Department of Chemical Engineering University of Missouri–Rolla.
  11. Vortex The Only Hybrid Nitrogen–Water Fire Suppression System (2008). Available at: http://www.firesafetyinc.com/PDFs/Vortex%20Brochure.pdf
  12. Forssell, E. W., Scheffey, J. L., DiNenno, P. J., Back, G. G. (2004). False Deck Development Testing of Hybrid Nitrogen – Water Mist Fire Suppression Systems. Halon Options Technical Working Conference (HOTWC), New Mexico Engineering Research Institute (NMERI), Albuquerque, NM.
  13. Sistema avtomaticheskogo pozharotusheniya «Zashchitnyy tuman» (2012). Available at: https://www.startbase.ru/innovations/63/
  14. Abduragimov, I. M., Govorov, V. G., Makarov, V. E. (1980). Fizicheskiye i khimicheskiye osnovy razvitiya i tusheniya pozharov. Moscow: VPTSh SSSR, 255.
  15. Lott, J. L., Christian, S. D., Sliepcevich, C. M., Tucker, E. E. (1996). Synergism between chemical and physical fire-suppressant agents. Fire Technology, 32 (3), 260–271. doi: 10.1007/bf01040218
  16. Balanyuk, V. M., Zhurbinskiy D. A. (2013). Phlegmatisation of flammable gas mixtures by aerosol sprays. Flegmatyzacja aerozolami mieszanin palnych. BiTP, 32 (4), 53–58.
  17. Moore, T. A., Yamada, N. (1998). Nitrogen gas as a halon replacement. Halon Options Technical Working Conference, 330–338.
  18. Zhurbinskiy, D. A. (2014). Flegmatizuvannya gazovikh goryuchikh seredovishch sumіshami vognegasnikh ayerozolіv ta gazovikh vognegasnikh rechovin. L., 19.
  19. Balanyuk, V. M., Grimalyuk, B. T., Kіt, Yu. V., Levush, S. S. (2004). Vpliv gazovoi fazi na efektivnіst vognegasnikh ayerozolіv. Vіsnik NU “Lvіvska polіtekhnіka”, 497, 11–12.
  20. Balanyuk, V. M., Grimalyuk, B. T. (2004). Doslіdzhennya vplivu іnertnikh gazovikh rozrіdzhuvachіv na efektivnіst vognegasnikh ayerozolіv. Pozhezhna bezpeka, 5, 18–24.
  21. Agafonov, S. N., Kopylov, A. V., Sychev, V. F., Uglov, D. B., Zhyganov, D. B. (2005). The mechanism of fire suppression by condensed aerosols. Halon Options Technical Working Conference, 15th Proceedings. HOTWC, 1–10.
  22. Zhartovskiy, V. M., Otkіdach, M. Ya., Tsapko, Yu. V., Tropіnov, O. G. (2003). Doslіdzhennya z viznachennya vognegasnoi efektivnostі sumіshey іngіbіtorіv gorіnnya ta іnertnikh rozrіdzhuvachіv. Naukoviy vіsnik, 2, 5–10.
  23. Yongfeng, Z., Xiang, J., Guangxuan, L., Ni, X. (2007). Experimental Study of the Fire-extinguishing Effectiveness of 1-Bromo- 3,3,3-Trifluoropropene/Nitrogen Mixtures. Journal of Fire Sciences, 25 (2), 177–187. doi: 10.1177/0734904107067914
  24. McGuire, J. H. (1981). Fighting building fires with liquid nitrogen: A literature survey. Fire Safety Journal, 4 (1), 15–19. doi: 10.1016/0379-7112(81)90003-5
  25. Levendis, Y., Ergut, A., Delichatsios, M. (2010). Cryogenic extinguishment of liquid pool fires. Process Safety Progress, 29, 79–86. doi: 10.1002/prs.10349
  26. Torikai, H., Murashita, T., Ito, A., Metoki, T. (2011). Extinguishment of a Laminar Jet Diffusion Flame Using a Soap Bubble Filled with Nitrogen Gas. Fire Safety Science - Proceedings, 10, 557–567. doi: 10.3801/iafss.fss.10-557
  27. Kopistinskiy, Yu. O., Balanyuk, V. M., Lavrenyuk, O. І., Zhurbinskiy, D. (2008). A. Perebіg okremikh vnutrіshnіkh protsesіv u vognegasnikh ayerozolyakh pіd chas gasіnnya difuzіynogo polum’ya. Naukoviy vіsnik UkrNDІPB, 1 (17), 155–159.
  28. Fotokamera NIKON1 J4. Available at: http://imaging.nikon.com/lineup/acil/bodies/j4/spec.htm
  29. Saito, N., Saso, Y., Ogawa, Y., Otsu, Y., Kikui, H. (1997). Fire Extinguishing Effect Of Mixed Agents Of Halon 1301 And Inert Gases. Fire Safety Science – Proceedings, 5, 901–910. doi: 10.3801/iafss.fss.5-901
  30. Ilichkin, V. S., Kopylov, N. P., Potanin, B. V. (2002). Eksperimentalnoye opredeleniye i otsenka pokazateley toksicheskoy opasnosti ognetushashchikh aerozoley. Pozharnaya bezopasnost, 4, 75–79.

Downloads

Published

2016-06-30

How to Cite

Balanyuk, V., Kozyar, N., & Garasyumyk, O. (2016). Study of fire–extinguishing efficiency of environmentally friendly binary aerosol-nitrogen mixtures. Eastern-European Journal of Enterprise Technologies, 3(10(81), 4–11. https://doi.org/10.15587/1729-4061.2016.72399