Correcting the position of piezoelectric transducers during acoustic control of the stressed-strained rolled sections

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.79978

Keywords:

acoustic control, stressed­strained state, shaped sections

Abstract

We used the mirror­shadow method for the diagnostics of stressed­strained state of shaped sections of metal structures. It was found that in the course of implementation of this method there may occur an error that is caused by misalignment of measurement with the dimension of acoustic receiving transducer. The work considers the effect of change in the geometry of shaped sections under the action of maximum permissible stress on the displacement of the point at which a beam of ultrasound wave arrives. We examined a question of influence of the slope of inner edge of the shelf of a shaped section on the displacement of the point of ultrasonic wave’s arrival sideways from the center of receiving transducer.

As a result of analytical studies, it was proved that changing geometric dimensions of control object practically does not affect displacement of the point of arrival of the beam from the center of the receiving transducer. It was found that for a number of shaped sections that have slopes of internal edges of the shelves, it is necessary to introduce correction of position of the receiving transducer relative to the emitting transducer by such parameters as angle and distance relative to the anchor point.

Performed research is a prerequisite for the development of design of the block of piezoelectric transducers for implementation of the system of acoustic diagnostics of the strained state of shaped sections.

Author Biographies

Gregorii Tymchik, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of chemical technology of ceramics and glass

Marina Filippova, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of chemical technology of ceramics and glass

Mariia Demchenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of chemical technology of ceramics and glass

References

  1. Derzhavni Budiveljni Normy V.2.6-198-2014 (2015). Stalevi konstruktsii. Minrehion Ukrainy, 205.
  2. Derzhavnyj standart 26020-83 (1998). Dvutavrу stalnуe horiachekatannуe s parallelnуmy hraniamy polok. Sortament. Yzdatelstvo standartov, 10.
  3. Derzhavnyj standart 8239-89 (1989). Dvutavrу stalnуe horiachekatannуe. Sortament. Yzdatelstvo standartov, 6.
  4. Derzhavnyj standart 3436-96 (1997). Shvellerу stalnуe horiachekatanуe. Sortament. Hosstandart Ukraynу, 10.
  5. Derzhavni Budiveljni Normy 362-92 (1995). Otsinka tekhnichnoho stanu stalevykh konstruktsii vyrobnychykh budivel i sporud, shcho znakhodiatsia v ekspluatatsii. Derzhbud Ukrainy, 98.
  6. Normatyvno-pravovyj akt po okhroni praci 45.2 1.01 98 (1999). Pravyla obstezhen, otsinky tekhnichnoho stanu ta pasportyzatsii vyrobnychykh budivel i sporud. Minrehion Ukrainy, 98.
  7. Li, Z., He, J., Teng, J., Wang, Y. (2016). Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method. Materials, 9 (4), 223. doi: 10.3390/ma9040223
  8. Guz, A. N. (2011). Ultrasonic nondestructive methods of stress analysis in materials and structural members (review). International Applied Mechanics, 46 (11), 1213–1220. doi: 10.1007/s10778-011-0413-x
  9. Nikitin, N. E., Kazachek, S. V. (2010). Preymushchestva metoda akustoupruhosty dlia nerazrushaiushcheho kontrolia mekhanycheskykh napriazhenyi v detaliakh mashyn. Vestnyk nauchno-tekhnycheskoho razvytyia, 4 (32), 18–28.
  10. Myshakyn, V., Danylova, V., Kurashkyn, K. V., Klyushnykov, V. A. (2011). Dyahnostyka materyalov konstruktsyi na rannykh stadyiakh ustalostnoho razrushenyia y otsenka NDS materyala konstruktsyi metodamy nerazrushaiushcheho kontrolia. Vestnyk SHAU, 3 (27), 299–307.
  11. Myshakyn, V. V., Gonchar, A. V., Kurashkyn, K. V., Danilova, N. V. (2009). Yssledovanye razrushenyia pry statycheskom nahruzhenyy svarnukh soedynenyi akustycheskym metodom. Tiazholoe mashynostroenye, 7, 27–30.
  12. Myshakyn, V. V., Perevezentsev, V. N., Klyushnykov, V. A., Danilov, N. V. (2010). Yspolzovanye ultrazvuka dlia otsenky sostoianyia metallycheskykh splavov pry plastycheskom, upruhoplastycheskom deformyrovanyy y termycheskoi obrabotke. Vestnyk Nyzhehorodskoho unyversyteta ym. N. Y. Lobachevskoho, 5 (2), 102–108.
  13. Lu, H., Liu, X. S., Yang, J. G., Zhang, S. P., Fang, H. Y. (2008). Ultrasonic stress evaluation on welded plates with Lcr wave. Science and Technology of Welding and Joining, 13 (1), 70–74. doi: 10.1179/174329307x249405
  14. Karabutov, A., Devichensky, A., Ivochkin, A., Lyamshev, M., Pelivanov, I., Rohadgi, U. et. al. (2008). Laser ultrasonic diagnostics of residual stress. Ultrasonics, 48 (6-7), 631–635. doi: 10.1016/j.ultras.2008.07.006
  15. Kim, N., Hong, M. (2009). Measurement of axial stress using mode-converted ultrasound. NDT & E International, 42 (3), 164–169. doi: 10.1016/j.ndteint.2008.09.005
  16. Jhang, K.-Y., Quan, H.-H., Ha, J., Kim, N.-Y. (2006). Estimation of clamping force in high-tension bolts through ultrasonic velocity measurement. Ultrasonics, 44, e1339–e1342. doi: 10.1016/j.ultras.2006.05.190
  17. EN 14127:2004 (E). Non-Destructive Testing. Ultrasonic Thickness Measurement.
  18. Javadi, Y., Plevris, V., Najafabadi, M. A. (2013). Using LCR Ultrasonic Method to Evaluate Residual Stress in Dissimilar Welded Pipes. International Journal of Innovation, Management and Technology, 4 (1), 170–174.
  19. Manchem, L. D., Srinivasan, M. N., Zhou, J. (2014). Analytical Modeling of Residual Stress in Railroad Rails Using Critically Refracted Longitudinal Ultrasonic Waves With COMSOL Multiphysics Module. Volume 9: Mechanics of Solids, Structures and Fluids, 58–63. doi: 10.1115/imece2014-38619
  20. Fylyppova, M. V., Bohdan, G. A., Demchenko, M. A. (2016). Opredelenye napriazhennoho sostoianyia elementov metallokonstruktsyi metodom akustycheskoi tenzometryy. Visnyk Natsionalnoho Tekhnichnoho Universytetu Ukrainy «KPI». Seriia pryladobuduvannia, 51, 53–60.

Downloads

Published

2016-10-31

How to Cite

Tymchik, G., Filippova, M., & Demchenko, M. (2016). Correcting the position of piezoelectric transducers during acoustic control of the stressed-strained rolled sections. Eastern-European Journal of Enterprise Technologies, 5(7 (83), 27–33. https://doi.org/10.15587/1729-4061.2016.79978

Issue

Section

Applied mechanics