Analysis of energy efficiency of a superconducting short circuit current limiter

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.84169

Keywords:

current limiter, high-temperature superconductor, magnetic circuit, short circuit

Abstract

The work deals with theoretical and experimental studies, aimed at increasing operational indicators of high-temperature superconducting short circuit current limiter of inductive type.

We designed a high-temperature superconducting current limiter of inductive type with a superconductive screen, a superconductive winding and a core, which are placed in a general cryostat, which ensures an improvement in energy efficiency. The inductances of magnetic system of a current limiter were determined for the nominal and emergency operating modes.

A special feature of the proposed procedure for the calculation of power losses in a current limiter, as well as the magnitude of heat flows to a cryostat, is the fact that the developed procedure considers design parameters of magnetic system with complete cryogenic cooling.

Based on the developed procedure, we carried out analysis of the power losses of a superconducting current limiter of inductive type and heat tides to the cryostat for the nominal regime, which demonstrated that the effect of cryogenic cooling of magnetic circuit on the power of heat release of a current limiter is insignificant and amounts to less than one percent.

We simulated the work of experimental model of the magnetic system of a current limiter of inductive type during cryogenic cooling with liquid nitrogen. The calculation procedure proposed makes it possible to analyze energy efficiency while determining necessary critical parameters of a superconducting current limiter. It was experimentally explored that the power losses under the nominal mode in the magnetic circuit of a superconductive current limiter of inductive type are insignificant, which corresponds to the previous theoretical calculations. The conducted experimental research confirmed theoretical positions and developed mathematical models. 

Author Biographies

Vladimir Dan’ko, National Technical University “Kharkiv Polytechnic Institute” Bagaliya str., 21, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of the department

Department of general electrical engineering

Eugene Goncharov, National Technical University “Kharkiv Polytechnic Institute” Bagaliya str., 21, Kharkiv, Ukraine, 61002

PhD, Researcher

Department of general electrical engineering

Igor Polyakov, National Technical University “Kharkiv Polytechnic Institute” Bagaliya str., 21, Kharkiv, Ukraine, 61002

PhD, Associate professor

Department of general electrical engineering

References

  1. Gubser, D. U. (2004). Superconductivity: An Emerging Power-Dense Energy-Efficient Technology. IEEE Transactions on Appiled Superconductivity, 14 (4), 2037–2046. doi: 10.1109/tasc.2004.838318
  2. Leung, E. M. (2000). Superconducting fault current limiters. IEEE Power Engineering Review, 20 (8), 1955–1960, 30. doi: 10.1109/39.857449
  3. Bock, J., Breuer, F., Walter, H., Elschner, S., Kleimaier, M., Kreutz, R., Noe, M. (2005). CURL 10: Development and Field-Test of a 10 kV/10 MVA Resistive Current Limiter Based on Bulk MCP-BSCCO 2212. IEEE Transactions on Appiled Superconductivity, 15 (2), 1955–1960. doi: 10.1109/tasc.2005.849344
  4. Elschner, S., Stemmle, M., Breuer, F., Walter, H., Frohne, C., Noe, M., Bock, J. (2008). Coil in coil – components for the high voltage superconducting resistive current limiter CULT 110. Journal of Physics: Conference Series, 97, 012309. doi: 10.1088/1742-6596/97/1/012309
  5. Chen, M., Paul, W., Lakner, M., Donzel, L., Hoidis, M., Unternaehrer, P. et. al. (2002). 6.4 MVA resitive fault current limiter based on Bi-2212 superconductor. Physica C: Superconductivity, 372-376, 1657–1663. doi: 10.1016/s0921-4534(02)01096-1
  6. Kovalsky, L., Yuan, X., Tekletsadik, K., Keri, A., Bock, J., Breuer, F. (2005). Applications of Superconducting Fault Current Limiters in Electric Power Transmission Systems. IEEE Transactions on Appiled Superconductivity, 15 (2), 2130–2133. doi: 10.1109/tasc.2005.849471
  7. Omura, K., Kojima, H., Hayakawa, N., Endo, F., Noe, M., Okubo, H. (2009). Current Limiting Characteristics of Parallel-Connected Coated Conductors for High-Tc Superconducting Fault Current Limiting Transformer (HTc-SFCLT). IEEE Transactions on Applied Superconductivity, 19 (3), 1880–1883. doi: 10.1109/tasc.2009.2018067
  8. Paul, W., Chen, M., Lakner, M., Rhyner, J., Braun, D., Lanz, W. (2001). Fault current limiter based on high temperature superconductors – different concepts, test results, simulations, applications. Physica C: Superconductivity, 354 (1-4), 27–33. doi: 10.1016/s0921-4534(01)00018-1
  9. Paul, W., Lakner, M., Rhyner, J., Unternährer, P., Baumann, T., Chen, M. et. al. (1997). Test of 1.2 MVA high- superconducting fault current limiter. Superconductor Science and Technology, 10 (12), 914–918. doi: 10.1088/0953-2048/10/12/011
  10. Waynert, J. A., Boenig, H. J., Mielke, C. H., Willis, J. O., Burley, B. L. (2003). Restoration and testing of an HTS fault current controller. IEEE Transactions on Appiled Superconductivity, 13 (2), 1984–1987. doi: 10.1109/tasc.2003.812958
  11. Moriconi, F., De La Rosa, F., Darmann, F., Nelson, A., Masur, L. (2011). Development and Deployment of Saturated-Core Fault Current Limiters in Distribution and Transmission Substations. IEEE Transactions on Applied Superconductivity, 21 (3), 1288–1293. doi: 10.1109/tasc.2011.2104932
  12. Yin Xin, Gong, W. Z., Niu, X. Y., Gao, Y. Q., Guo, Q. Q., Xiao, L. X. et. al. (2009). Manufacturing and Test of a 35 kV/90 MVA Saturated Iron-Core Type Superconductive Fault Current Limiter for Live-Grid Operation. IEEE Transactions on Applied Superconductivity, 19 (3), 1934–1937. doi: 10.1109/tasc.2009.2018510
  13. Danko, V. G., Goncharov, E. V. (2012). Patent 74741 Ukraina, MPK H02H 9/00. Nadprovidnyi obmezhuvach strumu korotkoho zamykannia z ekranom. Vlasnyk patentu NTU “KhPI”. u 201204751; declarated: 17.04.12; published: 12.11.12, Bul. 21, 4.
  14. Danko, V. G., Goncharov, E. V. (2015). Patent 107531 Ukraina, MPK H02H 9/00. Vysokotemperaturnyi nadprovidnyi obmezhuvach strumu korotkoho zamykannia z povnistiu kriohennym okholodzhenniam. Vlasnyk patentu NTU “KhPI”. a 201312286; declarated: 21.10.13; published: 12.01.15, Bul. 1, 4.
  15. Danko, V. G., Goncharov, E. V. (2010). Obmezhuvach strumu korotkoho zamykannia z nadprovidnym ekranom. Informatsiini tekhnolohii: nauka, tekhnika, tekhnolohiia, osvita, zdorovia, 159.
  16. Dan’ko, V. G., Goncharov, E. V. (2013). Calculating the parameters of an inductive short-circuit current limiter with a superconducting shield. Russian Electrical Engineering, 84 (9), 478–481. doi: 10.3103/s1068371213090046
  17. Korytskoho, Yu. V., Pasinkova, V. V., Tareeva, B. M. (1988). Spravochnyk po elektrotekhnycheskym materyalam. Leningrad: Enerhoatomyzdat, 728.
  18. Bamdas, A. M., Savynovskyi, Yu. A. (1969). Drossely peremennoho toka radyoelektronnoi apparatury (katushky so staliu). Moscow: Yzd-vo “Sovetskoe radyo”, 248.
  19. Rolyk, A. Y. (1980). Elektroprovodymost dysperhyrovannoho zheleza. Konstruktsyia y okhlazhdenye spetsyalnykh elektrycheskykh mashyn bezotkhodnoi tekhnolohyy, 62–68.
  20. Kazovskyi, E. Ya., Kartsev, V. P., Shakhtaryn, V. N. (1967). Sverkhprovodiashchye mahnitnye systemy. Moscow: Nauka, 320.
  21. Danko, V. G., Rudman, Y. Kh., Hrenaderova, L. A. (1982). Rezultaty rascheta moshchnykh tokovvodiashchykh ustroistv kryohennykh elektrycheskykh mashyn. Elektrotekhnycheskaia promishlennost. Elektrycheskye mashyny, 1 (131), 1–3.
  22. Danko, V. G. (1976). Nekotorye rezultaty razrabotok y modelnykh yssledovanyi kryoturboheneratorov. Enerhetyka y transport, 6, 3–10.
  23. Ying, L., Sheng, J., Lin, B., Yao, L., Zhang, J., Jin, Z. et. al. (2012). AC Loss and Contact Resistance of Resistive Type Fault Current Limiter Using YBCO Coated Conductors. IEEE Transactions on Applied Superconductivity, 22 (3), 5602204. doi: 10.1109/tasc.2011.2180294
  24. Malkov, M. P. (1973). Spravochnyk po fyzyko-tekhnycheskym osnovam kryohenyky. Moscow: „Enerhyia”, 392.
  25. Danko, V. G., Goncharov, E. V. (2012). Vyznachennia teplopryplyviv v kriostat nadprovidnoho obmezhuvacha strumu korotkoho zamykannia. Visnyk NTU “KhPI”, 3, 14–17.
  26. Belova, S. V. (1980). Sbornyk typovykh raschetov po kursu “Okhrana truda” dlia studentov fakulteta “Enerhomashynostroenye”. Moscow: MVTU, 92.
  27. Hrudynskoho, P. H., Petrova, H. N., Sokolova, M. M. et. al. (1974). Elektrotekhnycheskyi spravochnyk. Moscow: Enerhyia, 775.
  28. Merlyn, Yu. (2005). VTSP materyaly Raboti po dlynnomernym VTSP v Yaponyy. Sverkhprovodnyky dlia elektroenerhetyky, 2 (1), 12–13.
  29. Chernoplekov, N. A. (2004). Uspekh sverkhprovodnykov v elektroenerhetyke obespechat 2G VTSP provoda. Sverkhprovodnyky dlia elektroenerhetyky, 1 (1), 3–5.
  30. Usoskin, A., Mumford, F., Dietrich, R., Handaze, A., Prause, B., Rutt, A., Schlenga, K. (2009). Inductive Fault Current Limiters: Kinetics of Quenching and Recovery. IEEE Transactions on Applied Superconductivity, 19 (3), 1859–1862. doi: 10.1109/tasc.2009.2017705

Downloads

Published

2016-12-27

How to Cite

Dan’ko, V., Goncharov, E., & Polyakov, I. (2016). Analysis of energy efficiency of a superconducting short circuit current limiter. Eastern-European Journal of Enterprise Technologies, 6(5 (84), 4–12. https://doi.org/10.15587/1729-4061.2016.84169