The study of supercritical extraction of complexes of molybdenum with carbon dioxide

Authors

  • Boris Borts NSC "Kharkiv Institute for Physics & Technology" of NAS of Ukraine Akademicheskaya str., 1, Kharkiv, Ukraine, 61108, Ukraine https://orcid.org/0000-0002-1492-4066
  • Stella Skoromnaya NSC "Kharkiv Institute for Physics & Technology" of NAS of Ukraine Akademicheskaya str., 1, Kharkiv, Ukraine, 61108, Ukraine https://orcid.org/0000-0001-8962-7659
  • Anna Palamarchuk NSC "Kharkiv Institute for Physics & Technology" of NAS of Ukraine Akademicheskaya str., 1, Kharkiv, Ukraine, 61108, Ukraine https://orcid.org/0000-0002-9561-590X
  • Viktor Tkachenko NSC "Kharkiv Institute for Physics & Technology" of NAS of Ukraine Akademicheskaya str., 1, Kharkiv, Ukraine, 61108 V. N. Karazin Kharkiv National University Svobody sq., 6, Kharkiv, Ukraine, 61022, Ukraine https://orcid.org/0000-0002-1108-5842

DOI:

https://doi.org/10.15587/1729-4061.2016.85112

Keywords:

supercritical carbon dioxide, supercritical extraction, molybdenum isotopes

Abstract

Characteristics of short-living isotope 99mTc, the main instrument of nuclear medicine derived as a result of radioactive isotope 99Mo decay was given. 85 % of all diagnostics scans in the world for treatment of cancer diseases are conducted using the 99mTc isotope. In order to solve the problem of 99Mo isotopes extraction probe preparation and extraction method for Mo included in nitrate-containing complexes with tributyl phosphate (TBP) from molybdenum containing matrixes by the method of supercritical extraction with carbon dioxide (SCE-CO2) were offered. Quasi-periodic dependence of residual content of Mo in nitric acid solution on dilution time was shown, for the description of which the three-trophic model was offered. Theory of description of Mo dissolution in the diluted nitric acid by means of channels and jokers method was offered which gives good correspondence with experimental data.

The content of Mo as a SCE-CO2 extraction under different variations of modifiers and ways of extraction was studied. It was shown that the largest efficiency of Mo extraction reaches 90 % and is observed under the following ratio of modifiers: 0.2 ml TBP+Mo, 0.1 ml of acetyl-acetone and 0.05 ml of water.

Author Biographies

Boris Borts, NSC "Kharkiv Institute for Physics & Technology" of NAS of Ukraine Akademicheskaya str., 1, Kharkiv, Ukraine, 61108

Doctor of Technical Sciences, Senior Researcher, Deputy Director

Scientific Work of Sci. & Production Establishment "Accelerating nuclear systems" 

Stella Skoromnaya, NSC "Kharkiv Institute for Physics & Technology" of NAS of Ukraine Akademicheskaya str., 1, Kharkiv, Ukraine, 61108

PhD, Researcher

Sci. & Production Establishment "Renewable Energy Sources & Sustainable Technologies" 

Anna Palamarchuk, NSC "Kharkiv Institute for Physics & Technology" of NAS of Ukraine Akademicheskaya str., 1, Kharkiv, Ukraine, 61108

Engineer-researcher

Sci. & Production Establishment "Accelerating nuclear systems" of 

Viktor Tkachenko, NSC "Kharkiv Institute for Physics & Technology" of NAS of Ukraine Akademicheskaya str., 1, Kharkiv, Ukraine, 61108 V. N. Karazin Kharkiv National University Svobody sq., 6, Kharkiv, Ukraine, 61022

Doctor of Physical and Mathematical Sciences, Professor, Director

Sci. & Production Establishment "Renewable Energy Sources & Sustainable Technologies"

Head of Department

Department of Physics of Innovative Energy & Technology & Ecology 

References

  1. Bekman, I. N. (2012). Radiation and nuclear medicine: physical and chemical aspects. Radiochemistry. In 7 volumes. Vol. 7. Tutorial. Publisher Markhotin P. Yu., 400.
  2. Samsonov, M. D., Shadrin, A. Yu., Shafikov, D. N., Kulyako, Yu. M., Myasoedov, B. F. (2011). Supercritical fluid extraction in modern radiochemistry. Radiochemistry, 53 (2), 97–106.
  3. Borts, B. V., Ivanova, S. F., Kazarinov, Yu. H., Neklyudov, I. M., Sirenko, S. A., Tkachenko, V. I. (2006). Patent Ukrayiny na vynakhid # 112690 MPK. Sposib nadkrytychnoyi flyuyidnoyi ekstraktsiyi kompleksiv metalu. Natsional'nyy naukovyy tsentr "Kharkivs'kyy fizyko-tekhnichnyy instytut"; # a201412371; declareted: 17.11.2014; published: 10.10.2016, Bul. 19.
  4. Lin, Y., Brauer, R. D., Laintz, K. E., Wai, C. M. (1993). Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated .beta.-diketone. Analytical Chemistry, 65 (18), 2549–2551. doi: 10.1021/ac00066a027
  5. Babain, V. А., Kamachev, V. A., Kiseleva, R. N., Murzin, A. A., Smirnov, I. V., Shadrin, A. Yu., Yakimovich, S. I., Zerova, I. V. (2003). The influence of the nature of the fluid and β–diketone to the supercritical extraction of metal complexes with β–diketonate. Radiochemistry, 45 (6), 543–545.
  6. Shadrin, A. Yu. (2007). Extraction of actinides with solutions of chelating agents in supercritical and liquid carbon dioxide. Works of radium Institute V. G. Khlopina, XII, 20–43.
  7. Borts, B. V., Ivanova, S. F., Kazarinov, Yu. G., Neklyudov, I. M., Tkachenko, V. I. (2015). Spatially inhomogeneous distribution of the isotope uranium – 235 in supercritical fluid extraction with carbon dioxide in a gradient. PAST, Ser. Material science and new materials, 4 (83), 81–91.
  8. Hung, L., Hertz, A., Hartmann, D., Charton, F., Boutin, O. (2016). Supercritical CO2 extraction of molybdenum-ligand complexes from sulfuric solutions. The Journal of Supercritical Fluids, 111, 97–103. doi: 10.1016/j.supflu.2016.01.017
  9. Bolshakov, K. A. (Ed.) (1978). Chemistry and technology of rare and dispersed metals. Vol. 3. Moscow, 212.
  10. Chemical Encyclopedia of 5 volumes. Vol. 3 (1992). Moscow: Big Russian Encyclopedia, 639.
  11. Bekman, I. N. (2014). Radiochemistry. In 2 volumes. Vol. 1. The fundamental radiochemistry. Tutorial and Workshop. Moscow: Publisher Yurayt. Series: Bachelor. Academic course, 473.
  12. Zefirov, N. S. (Ed.) (1995). Chemical Encyclopedia. In 5 volumes. Vol. 4. Moscow, 639.
  13. Zelikman, A. N., Korshunov, B. G. (1991). Metallurgy of rare metals. Moscow: Metallurgy, 432.
  14. Nikol'skij, B. P. (1971). Chemical handbook. The basic properties of the inorganic and organic compounds. Vol. 2. Leningrad: Chemistry, 1168.
  15. Goletskiy, N. D., Zilberman, B. Y., Fedorov, Y. S., Khonina, I. V., Kukharev, D. N. (2006). The influence of tributyl phosphate on molybdenum extraction with solutions of dibutyl phosphoric acid. Czechoslovak Journal of Physics, 56 (S4), D509–D517. doi: 10.1007/s10582-006-0543-2
  16. Goleckij, N. D., Mashirov, L. G., Zil'berman, B. Ja., Fedorov, Ju. S. et. al. (2010). Molybdenum extraction solution TBP from supersaturated nitric acid solutions. Radiochemistry, 52 (2), 155–161.
  17. Tytko, K.-H., Trobisch, U., Katscher, H. (2013). Gmelin Handbook of Inorganic and Organometallic Chemistry. 8th edition. Springer Science & Business Media, 360.
  18. Borts, B. V., Ivanova, S. F., Palamarchuk, A. P., Sirenko, S. A., Tkachenko, V. I. (2015). Sample preparation and supercritical fluid carbon dioxide extraction of molybdenum complexes. Supercritical fluids: fundamentals, technologies and innovations, 3–9.
  19. Zul'pukarov, M.-G. M., Malineckij, G. G., Podlazov, A. V. (2007). The use of channels and jokers method for describing the dynamics of the Rosenzweig–Macarthur system. Mathematical modeling, 19 (6), 3–15.
  20. Borts, B. V., Skoromnaya, S. F., Tkachenko, V. I. (2012). Formation of Associates from Nanosized Complexes of Uranium in the Water – Supercritical Carbon Dioxide System. The Journal of KNU, Physical series «Nuclei, Particles, Fields», 1017 (3 (55), 128–134.

Downloads

Published

2016-12-20

How to Cite

Borts, B., Skoromnaya, S., Palamarchuk, A., & Tkachenko, V. (2016). The study of supercritical extraction of complexes of molybdenum with carbon dioxide. Eastern-European Journal of Enterprise Technologies, 6(6 (84), 57–63. https://doi.org/10.15587/1729-4061.2016.85112

Issue

Section

Technology organic and inorganic substances