Increasing the efficiency of film solar cells based on cadmium telluride

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.85617

Keywords:

film solar element, heterostructure, cadmium telluride, output parameters, back contact

Abstract

We conducted analysis of losses in the output parameters of solar cells based on CdTe/CdS, which are caused by the design features of instrument structure and by the photoelectric processes that occur in its volume when absorbing light. Based on the carried out analysis, the ways for the improvement of SC are determined for the purpose of increasing the efficiency of a photo element. The approaches to increasing the efficiency of a photo element are examined, which were previously realized by scientists. It was established that, despite the implemented technologies, efficiency of the obtained samples does not reach theoretical maximum (ηtheor≈29 %). A basic technological approach, which was realized by many authors, when creating the low ohmic contacts to SC based on CdS/CdTe is the formation of tunnel contacts, using in this case thin films that contain copper or copper chalcogenide. However, the diffusion of copper into the base layer leads to the degradation of output parameters of the film SC based on CdS/CdTe. That is why we carried out comprehensive studies, aimed at designing back contacts to the CdTe base layers for the creation of highly effective, degradation-resistant solar cells.

It is experimentally established that in the absence of the copper layer at the back surface or in the absence of the annealing process after the formation of a back contact, efficiency of the film ITO/CdS/CdTe/Cu/Au SC is limited at the level of 3–4 % due to the work of instrument structure in the regime of "open diode". In the course of formation of quality Cu/Au tunnel contact, the SC efficiency increases to 10,4 %. 

Author Biographies

Gennady Khrypunov, National Technical University "Kharkiv Polytechnic Institute" Bahaleya str., 21, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of physical materials for the electronics and solar energy

Serg Vambol, National University of Civil Defense of Ukraine Chernyshevskaya str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of Applied Mechanics

Natalya Deyneko, National University of Civil Protection of Ukraine Chernyshevskaya str., 94, Kharkiv, Ukraine, 61023

PhD

Department of Applied Mechanics

Yana Sychikova, Berdyansk State Pedagogical University Schmidt str., 4, Berdyansk, Ukraine, 71100

PhD, Associate Professor

Department of Vocational Education 

References

  1. Kyrychenko, M. V., Zaitsev, R. V., Deineko, N. V., Kopach, V. R., Antonova, V. A., Lystratenko, A. M. (2007). Vlyianye konstruktyvno-tekhnolohycheskoho reshenyia kremnyevykh fotopreobrazovatelei na parametry neosnovnykh nosytelei zariada v ykh bazovykh krystallakh. Radyofyzyka y elektronyka, 12 (1), 255–262.
  2. Romeo, N., Bosio, A., Romeo, A. (2010). An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules. Solar Energy Materials and Solar Cells, 94 (1), 2–7. doi: 10.1016/j.solmat.2009.06.001
  3. De Vos, A., Parrott, J., Baruch, P., Landsberg, P. (1994). Вandgap effects in thin-film heterojunction solar cells. Proceeding 12th European Photovoltaic Solar Energy Conference. Amsterdam, 1315–1319.
  4. Wu, X., Keane, J. C., Dhere, R. G., Dehart, C., Albin, D. S., Duda, A. et. al. (2001). 16.5 %-Efficient CdS/CdTe polycrystalline thin-film solar cell. 17th European Photovoltaic Solar Energy Conference. Munich, Germany, 995–1000.
  5. Kontges, M., Reineke-Koch, R., Nollet, P., Beier, J., Schaffler, R., Parisi, J. (2002). Light induced changes in the electrical behavior of CdTe and Cu(In,Ga)Se2 solar cells. Thin Solid Films, 403-404, 280–286. doi: 10.1016/s0040-6090(01)01507-3
  6. Zeng, G., Zhang, J., Li, B., Li, W., Wu, L., Wang, W., Feng, L. (2015). Effects of different CdCl2 annealing methods on the performance of CdS/CdTe polycrystalline thin film solar cells. Science China Technological Sciences, 58 (5), 876–880. doi: 10.1007/s11431-015-5787-2
  7. Riech, I., Pena, J. L., Ares, O., Rios-Flores, A., Rejon-Moo, V., Rodriguez-Fragoso, P., Mendoza-Alvarez, J. G. (2012). Effect of annealing time of CdCl 2 vapor treatment on CdTe/CdS interface properties . Semiconductor Science and Technology, 27 (4), 045015. doi: 10.1088/0268-1242/27/4/045015
  8. Khrypunov, G., Bereznev, S., Meriuts, A., Kopach, G., Kovtun, N., Deyneko, N. (2010). Development оrganic вack сontact for thin-film CdS/CdTe solar cell. Physics And Chemistry of Solid State, 11 (1), 248–251.
  9. Wu, H. (2014). p-CdTe/n-CdS photovoltaic cells in the substrate configuration. Rochester, N.Y., 104.
  10. Enzenroth, R. A., Barth, K. L., Sampath, W. S. (2005). Correlation of stability to varied CdCl2 treatment and related defects in CdS/CdTe PV devices as measured by thermal admittance spectroscopy. Journal of Physics and Chemistry of Solids, 66 (11), 1883–1886. doi: 10.1016/j.jpcs.2005.09.022
  11. Batzner, D., Romeo, A., Zogg, H., Wendt, R., Tiwari, A. (2001). Development of efficient and stable back contacts on CdTe/CdS solar cells. Thin Solid Films, 387 (1-2), 151–154. doi: 10.1016/s0040-6090(01)00792-1
  12. Mamazza, R., Balasubramanian, U., More, D. L., Ferekides, C. S. (2002). Thin films of CdIn/sub 2/O/sub 4/ as transparent conducting oxides. Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference. doi: 10.1109/pvsc.2002.1190640
  13. Minami, T., Kakumu, T., Takeda, Y., Takata, S. (1996). Highly transparent and conductive ZnO-In2O3 thin films prepared by d.c. magnetron sputtering. Thin Solid Films, 290-291, 1–5. doi: 10.1016/s0040-6090(96)09094-3
  14. Price, K. J. (2001). Effect of CdCl2 Treatment on the Interior of CdTe Crystals. MRS Proceedings, 668. doi: 10.1557/proc-668-h1.7
  15. Romeo, A., Batzner, D., Zogg, H., Tiwari, A. (2000). Recrystallization in CdTe/CdS. Thin Solid Films, 361-362, 420–425. doi: 10.1016/s0040-6090(99)00753-1
  16. Sandhu, A., Kobayashi, K., Okamoto, T., Yamada, A., Konagai, M. (2001). Effect of CdCl2 Treatment Conditions on the Deep Level Density, Carrier Lifetime and Conversion Efficiency of CdTe Thin Film Solar Cells. MRS Proceedings, 668. doi: 10.1557/proc-668-h8.13
  17. Wu, X., Ribelin, R., Dhere, R. G., Albin, D. S., Gessert, T. A., Asher, S. et. al. (2000). High-efficiency Cd/sub 2/SnO/sub 4//Zn/sub 2/SnO/sub 4//Zn/sub x/Cd/sub 1-x/S/CdS/CdTe polycrystalline thin-film solar cells. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference – 2000 (Cat. No.00CH37036). doi: 10.1109/pvsc.2000.915873
  18. Demtsu, S. H., Sites, J. R. (2005). Quantification of losses in thin-film CdS/CdTe solar cells. Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference. doi: 10.1109/pvsc.2005.1488140
  19. Hegedus, S. S., McCandless, B. E., Birkmire, R. W. (2000). Analysis of stress-induced degradation in CdS/CdTe solar cells. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference – 2000 (Cat. No.00CH37036). doi: 10.1109/pvsc.2000.915891
  20. Terheggen, M., Heinrich, H., Kostorz, G., Baetzner, D., Romeo, A., Tiwari, A. N. (2004). Analysis of Bulk and Interface Phenomena in CdTe/CdS Thin-Film Solar Cells. Interface Science, 12 (2/3), 259–266. doi: 10.1023/b:ints.0000028655.11608.c7
  21. Enzenroth, R. A., Barth, K. L., Sampath, W. S. (2005). Correlation of stability to varied CdCl2 treatment and related defects in CdS/CdTe PV devices as measured by thermal admittance spectroscopy. Journal of Physics and Chemistry of Solids, 66 (11), 1883–1886. doi: 10.1016/j.jpcs.2005.09.022
  22. Green, M. A. (1992). Solar cells: operating principles, technology and system applications. Kensington, Australia: University of New South Wales, 274.
  23. Batzner, D. L., Wendt, R., Romeo, A., Zogg, H., Tiwari, A. N. (2000). A study of the back contacts on CdTe/CdS solar cells. Thin Solid Films, 361-362, 463–467. doi: 10.1016/s0040-6090(99)00842-1
  24. PV Status Report 2004. Research, Solar Cell Production and Market Implementation of Photovoltaics (2004). European Commission, DG JRC. Ispra, Italia, 98.

Downloads

Published

2016-12-27

How to Cite

Khrypunov, G., Vambol, S., Deyneko, N., & Sychikova, Y. (2016). Increasing the efficiency of film solar cells based on cadmium telluride. Eastern-European Journal of Enterprise Technologies, 6(5 (84), 12–18. https://doi.org/10.15587/1729-4061.2016.85617