Examining energy-efficient recuperative braking modes of traction asynchronous frequency-controlled electric drives

Authors

  • Oleg Sinchuk Kryvyi Rih National University Vitalija Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027, Ukraine https://orcid.org/0000-0002-7621-9979
  • Igor Kozakevich Kryvyi Rih National University Vitalija Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027, Ukraine
  • Dmytro Kalmus Kryvyi Rih National University Vitalija Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027, Ukraine
  • Roman Siyanko Kryvyi Rih National University Vitalija Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2017.91912

Keywords:

, asynchronous motor, recuperative braking, electromagnetic torque, flux linkage, energy efficiency, vector control, stator current, angular velocity, braking torque

Abstract

Energy efficiency is an important task of modern society due to the finite amount of mineral resources and environmental problems. Even more important this task is for electric transport vehicles with autonomous energy sources since its successful solution affects performance indicators of these systems. Particularly promising in the context of this problem is the question of energy optimization in the recuperative braking modes because it makes it possible to return kinetic energy, accumulated by transport vehicle, to the source.

In present paper we analyzed equations of state of asynchronous motor under static operation mode in order to obtain analytical dependences that describe motor performance under recuperative braking mode. Conducted analysis allowed us to establish an interrelation between the limits in magnitudes of voltage and current, parameters of equivalent circuit and the torque generated at such work. By examining the received patterns, we calculated the magnitude of minimum angular velocity at which it is possible to realize the mode of recuperative braking, that is, the generation of electrical energy by motor to the power supply.

A special benefit of present work is that the obtained dependences were explored both for the work at angular velocity that is lower than the base one and for a field weakening mode since in electric drives of transport vehicles of alternating current the use of two-zone control is quite common. By applying mathematical modeling, we confirmed the results received in present work.

Author Biographies

Oleg Sinchuk, Kryvyi Rih National University Vitalija Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor, Head of Department

Department of automation electromechanical systems in the industry and vehicles

 

Igor Kozakevich, Kryvyi Rih National University Vitalija Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of automation electromechanical systems in the industry and vehicles

Dmytro Kalmus, Kryvyi Rih National University Vitalija Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Senoir Lecturer

Department of automation electromechanical systems in the industry and vehicles

Roman Siyanko, Kryvyi Rih National University Vitalija Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Department of automation electromechanical systems in the industry and vehicles

References

  1. Smotrov, E. A., Vershinin, D. A., Gerasimjak, V. G. (2012). Optimizacija processa rekuperativnogo tormozhenija v jelektroprivodah malyh jelektrotransportnyh sredstv. Elektrotehnichni ta komp’juterni systemy, 7, 18–21.
  2. Smotrov, E. A. (2011). Rekuperator bortovogo istochnika pitanija jelektrotransportnogo sredstva. Elektrotehnichni ta komp’juterni systemy, 2, 7–12.
  3. Andrijenko, P. D., Shylo, S. I., Kaplijenko, O. O., Shevchenko, N. M. (2011). Doslidzhennja reostatno-rekuperatyvnogo gal'muvannja u systemi impul'snogo reguljuvannja serijesnogo elektrodvyguna. Elektryfikacija transportu, 2, 6–9.
  4. Sinchuk, O. N., Osadchuk, Ju. G., Kozakevich, I. A. (2014). Bezdatchikovoe vektornoe upravlenie na osnove anizotropnyh svojstv mashiny. Jelektrotehnicheskie i komp'juternye sistemy, 15, 45–47.
  5. Murthy, A. S., Magee, D. P., Taylor, D. G. (2015). Regenerative braking capability of converter-controlled induction machines. 2015 IEEE Transportation Electrification Conference and Expo (ITEC). doi: 10.1109/itec.2015.7165828
  6. Kozakevych, I. A. (2015). Systema bezdatchykovogo vektornogo keruvannja z vykorystannjam relejnyh reguljatoriv. Problemy energoresursozberezhennja v elektrotehnichnyh systemah. Nauka, osvita i praktyka. Naukove vydannja, 80–82.
  7. Olarescu, N.-V., Weinmann, M., Zeh, S., Musuroi, S., Sorandaru, C. (2011). Optimum torque control algorithm for wide speed range and four quadrant operation of stator flux oriented induction machine drive without regenerative unit. 2011 IEEE Energy Conversion Congress and Exposition. doi: 10.1109/ecce.2011.6063998
  8. Murthy, A. S., Magee, D. P., Taylor, D. G. (2016). Optimized regenerative braking of induction machines with indirect field-oriented control. 2016 IEEE Transportation Electrification Conference and Expo (ITEC). doi: 10.1109/itec.2016.7520292
  9. Li, Y., Zhang, X., Yang, J. (2016). A Cost-Effective Regenerative Braking System for Electric Vehicles Driven by Induction Machine. 2016 IEEE Vehicle Power and Propulsion Conference (VPPC). doi: 10.1109/vppc.2016.7791567
  10. Inoue, K., Ogata, K., Kato, T. (2008). An effcient induction motor drive method with a regenerative power storage system driven by an optimal torque. 2008 IEEE Power Electronics Specialists Conference. doi: 10.1109/pesc.2008.4591955
  11. Agrawal, S. K., Kumar, V., Alam, A., Thakura, P. (2014). Regenerative braking for induction motor drive. 2014 6th IEEE Power India International Conference (PIICON). doi: 10.1109/34084poweri.2014.7117698
  12. Cholula, S., Claudio, A., Ruiz, J. (2005). Intelligent Control of the Regenerative Braking in an Induction Motor Drive. 2005 2nd International Conference on Electrical and Electronics Engineering. doi: 10.1109/iceee.2005.1529631
  13. Peroutka, Z., Zeman, K., Flajtingr, J. (2006). Active Regenerative Braking: Braking of Induction Machine Traction Drive with Maximum Torque in High Speeds. 2006 12th International Power Electronics and Motion Control Conference. doi: 10.1109/epepemc.2006.283207
  14. Visin, N. G., Vlasenko, B. T., Kijko, A. I. (2003). Funkcional'naja shema sistemy avtomaticheskogo upravlenija rekuperativnym tormozheniem dlja jelektrovozov postojannogo toka so staticheskimi preobrazovateljami. Visnyk Dnipropetrovs'kogo nacional'nogo universytetu zaliznychnogo transportu imeni akademika V. Lazarjana, 1, 36–40.
  15. Visin, N. G., Vlasenko, B. T., Kijko, A. I., Egorov, A. A. (2005). Povyshenie jeffektivnosti shemy zashhity tjagovyh dvigatelej ot vneshnih i vnutrennih korotkih zamykanij pri rekuperativnom tormozhenii na jelektrovozah DJe1. Visnyk Dnipropetrovs'kogo nacional'nogo universytetu zaliznychnogo transportu imeni akademika V. Lazarjana, 9, 115–119.
  16. Vlas'jevs'kyj, S. V., Skoryk, V. G., Bunjajeva, E. V., Fokin, D. S. (2011). Povyshenie jeffektivnosti raboty jelektrovoza peremennogo toka s plavnym regulirovaniem naprjazhenija v rezhimah tjagi i rekuperativnogo tormozhenija. Elektryfikacija transportu, 1, 30–34.
  17. Vlas’jevs'kyj, S. V., Skoryk, V. G., Bunjajeva, E. V. (2011). Snizhenie svobodnyh kolebanij naprjazhenija v kontaktnoj seti pri rabote jelektrovoza peremennogo toka v rezhime rekuperativnogo tormozhenija. Elektryfikacija transportu, 2, 29–30.
  18. Visin, N. G., Vlasenko, B. T., Sokolov, S. A. (2007). Rezul'taty issledovanij po povysheniju nadezhnosti raboty sistemy avtomaticheskogo upravlenija v rezhimah tjagi i rekuperativno-reostatnogo tormozhenija na jelektropoezdah JeR2T. Visnyk Dnipropetrovs'kogo nacional'nogo universytetu zaliznychnogo transportu imeni akademika V. Lazarjana, 17, 55–58.
  19. Vlas’jevs'kyj, S. V., Skoryk, V. G., Bunjajeva, Je. V. (2012). Snizhenie kojefficienta iskazhenija sinusoidal'nosti naprjazhenija kontaktnoj seti pri rabote jelektrovoza peremennogo toka v rezhime rekuperativnogo tormozhenija. Elektryfikacija transportu, 3, 43–48.
  20. Sinchuk, O. N., Sinchuk, I. O., Chernaya, V. O. (2012). Protection system of AC mine electric locomotive from the emergencies. Russian Electrical Engineering, 83 (4), 225–229. doi: 10.3103/s1068371212040116
  21. Kozakevich, I. A. (2014). Issledovanie adaptivnogo nabljudatelja polnogo porjadka dlja nizkih uglovyh skorostej dvigatelja. Perspektyvy rozvytku suchasnoi' nauky. Herson: Vydavnychyj dim "Gel'vetyka", 65–67.
  22. Sinchuk, O. M., Kozakevych, I. A., Shvydkyj, D. O. (2014). Analiz sposobiv pokrashhennja dynamichnyh vlastyvostej asynhronnyh elektropryvodiv zi skaljarnym keruvannjam. Jakist' mineral'noi' syrovyny, 428–432.
  23. Kozakevych, I. A. (2014). Doslidzhennja adaptyvnyh system dlja bezdatchykovogo keruvannja asynhronnymy dvygunamy pry roboti na nyz'kyh chastotah obertiv. Problemy energoresursozberezhennja v elektrotehnichnyh systema. Nauka, osvita i praktyka, 29–31.
  24. Osadchuk, Ju. G., Kozakevych, I. A., Sinchuk, I. O. (2010). Algorytm kompensacii' efektu "mertvogo chasu" v tr'ohrivnevyh invertorah naprugy. Elektromehanichni i energozberigajuchi systemy, 1, 38–41.
  25. Kozakevych, I. A. (2014). Adaptyvnyj sposib kompensacii' nelinijnyh vlastyvostej invertora naprugy dlja bezdatchykovogo vektornogo keruvannja na nyz'kyh chastotah obertiv. Elektromehanichni i energozberigajuchi systemy, 1, 19–25.
  26. Gaiceanu, M., Nichita, C. (2014). Regenerative AC drive system with the three-phase induction machine. 2014 International Conference on Applied and Theoretical Electricity (ICATE). doi: 10.1109/icate.2014.6972641

Downloads

Published

2017-02-28

How to Cite

Sinchuk, O., Kozakevich, I., Kalmus, D., & Siyanko, R. (2017). Examining energy-efficient recuperative braking modes of traction asynchronous frequency-controlled electric drives. Eastern-European Journal of Enterprise Technologies, 1(1 (85), 50–56. https://doi.org/10.15587/1729-4061.2017.91912

Issue

Section

Engineering technological systems