Selecting a model of unmanned aerial vehicle to accept it for military purposes with regard to expert data

Authors

  • Andrey Alimpiev Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023, Ukraine
  • Polina Berdnik V. N. Karazin Kharkiv National University Svobody ave., 4, Kharkiv, Ukraine, 61022, Ukraine
  • Natalia Korolyuk Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023, Ukraine
  • Elena Korshets National University of Defense of Ukraine named after Ivan Chernyakhovsky Povitroflotsky ave., 28, Kyiv, Ukraine, 03049, Ukraine
  • Maxim Pavlenko Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2017.93179

Keywords:

unmanned aerial vehicle, decomposition of problem into hierarchy, linguistic variable

Abstract

The issue of equipping Armed Forces with modern unmanned aerial vehicles and accepting them into service remains unresolved. At present, the needs of Armed Forces of Ukraine in unmanned aerial vehicles have not been clearly identified, as well as the approaches regarding the choice of particular models. Present article proposes to select a model of armament based on the set of basic indicators (criteria) that may have quantitative and qualitative nature. We substantiate the necessity to predict the values of indicators under conditions of nonstochastic uncertainty. It is noted that should the research utilize statistics, then the task of predicting the given characteristics could be solved under conditions of stochastic uncertainty. In this case, it is necessary to take into account the assumption that the set of factors, which defined statistical significance of TTC, remains unchanged over the predicted time period. Under such assumption, long-term prediction of the TTC values cannot be considered satisfactory. It is obvious that the prediction of TTC values of UAV samples is considered under conditions of nonstochastic uncertainty based on the setting of appraisal and processing expert data. We proposed a decomposition of problem into hierarchy that reflects the content of multi-criteria optimization problem, in this case, it is characterized by a fuzzy description of the predicted values of basic UAV TTC, which have distinctly expressed quantitative and qualitative nature and are measured in appropriate magnitudes. An appraisal was performed to determine the predicted values of each characteristics of UAV. When processing expert data, values for each of the quantitative characteristics are represented by a fuzzy triangular number.

Regarding the indicators of qualitative nature, we examined relevant linguistic variables. According to the method of hierarchy analysis, we carried out a comparative assessment of the indicators' significance. In order to obtain generalized indicators for the priority UAV model, the principle of synthesis is proposed.

Author Biographies

Andrey Alimpiev, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

PhD, Head of University 

Polina Berdnik, V. N. Karazin Kharkiv National University Svobody ave., 4, Kharkiv, Ukraine, 61022

PhD, Senior Lecturer

Center for international education

Natalia Korolyuk, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of combat use and operation of ASU

Elena Korshets, National University of Defense of Ukraine named after Ivan Chernyakhovsky Povitroflotsky ave., 28, Kyiv, Ukraine, 03049

PhD, Associate Professor

Department of Air Force 

Maxim Pavlenko, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Head of Department

Department of mathematical and software

References

  1. Dunn, D. H. (2013). Drones: disembodied aerial warfare and the unarticulated threat. International Affairs, 89 (5), 1237–1246. doi: 10.1111/1468-2346.12069
  2. Living Under Drones: Death, Injury and Trauma to Civilians From US Drone Practices in Pakistan (2012). Stanford Law School, 182. Available at: http://chrgj.org/wp-content/uploads/2012/10/Living-Under-Drones.pdf
  3. Hronika grazhdanskoj vojny v Sirii. WarOnline. Available at: http://waronline.org
  4. Masood, S. (2011). C.I.A. Leaves Base in Pakistan Used for Drone Strikes. The New York Times. Available at: http://www.nytimes.com/2011/12/12/world/asia/cia-leaves-pakistan-base-used-for-drone-strikes.html
  5. Novichko, N. (2012). The area of operations from Afghanistan to Africa. Voenno-promyshlennyi kur'er, 6 (423). Available at: http://vpk-news.ru/articles/8619
  6. Abrosimov, V. K. (2013). Gruppovoe dvizhenie intellektual'nyh letatel'nyh apparatov v antagonisticheskoj brede. Moscow: Nauka, 250.
  7. Mosov, S. P. (2008). Bespilotnaja razvedyvatel'naja aviacija stran mira: istorija sozdanija, opyt boevogo primenenija, sovremennoe sostojanie, perspektivy razvitija. Kyiv: Izd. dom. “Rumb”, 160.
  8. Pro shvalennja Strategii' rozvytku vitchyznjanoi' aviacijnoi' promyslovosti na period do 2020 roku (2008). Kabinet Ministriv Ukrai'ny, No. 1656-r. Available at: http://zakon2.rada.gov.ua/laws/show/1656-2008-%D1%80
  9. Bil'chuk, V. M. (2006). Metod formuvannja docil'nyh strategij modernizacii' ta stvorennja novyh zrazkiv ozbrojennja. Systemy ozbrojennja i vijs'kova tehnika, 2, 39–46.
  10. Gonçalves, F. S., Raffo, G. V., Becker, L. B. (2016). Managing CPS Complexity: Design Method for Unmanned Aerial Vehicles. IFAC-PapersOnLine, 49 (32), 141–146. doi: 10.1016/j.ifacol.2016.12.204
  11. Zbrutsky, O. V., Prokhorchuk, O. V., Kolesnichenko, V. B., Marynoshenko, O. P. (2013). Unmanned aerial vehicles and technologies by NTUU “KPI”. 2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD). doi: 10.1109/apuavd.2013.6705268
  12. Moorkamp, M., Wybo, J.-L., Kramer, E.-H. (2016). Pioneering with UAVs at the battlefield: The influence of organizational design on self-organization and the emergence of safety. Safety Science, 88, 251–260. doi: 10.1016/j.ssci.2015.09.029
  13. Alimpiev, A., Vatan, M. et. al. (2016). The result of analyses of great classes unmanned aircraft for evaluation the opportunity of joint employment with army aviation. Weapons systems and military equipment, 1, 6–9.
  14. Kuprijanova, V. S., Matjushenko, I. Ju. (2015). State and prospects unmanned aerial vehicle in Ukraine. Journal of transport Economics and industry, 50, 334–340.
  15. Burenok, V. M., Ivlev, A. V. (2009). Razvitie voennyh tehnologij XXI veka: problemy planirovanie, realizacija. Tver: Izdatel'stvo OOO «KUPOL», 624.
  16. Ukrai'na otrymala partiju bezpilotnyh lital'nyh aparativ vid SShA (2016). Ministerstvo oborony Ukrai'ny. Available at: http://www.mil.gov.ua/news/2016/07/27/ukraina-otrimala-partiyu-bezpilotnih-litalnih-aparativ-vid-ssha--/
  17. Saaty, T. L., Shih, H.-S. (2009). Structures in decision making: On the subjective geometry of hierarchies and networks. European Journal of Operational Research, 199 (3), 867–872. doi: 10.1016/j.ejor.2009.01.064
  18. Mitihin, V. (2014). Eshhe raz o korrektnosti metoda analiza ierarhij. Vol. 1. Fundamental'nye i prikladnye nauki segodnja, 188–194.
  19. Chernoruckij, G. S. (2005). Metody prinjatija reshenij. Sankt-Peterburg: BHV-Peterburg, 416.

Downloads

Published

2017-02-21

How to Cite

Alimpiev, A., Berdnik, P., Korolyuk, N., Korshets, E., & Pavlenko, M. (2017). Selecting a model of unmanned aerial vehicle to accept it for military purposes with regard to expert data. Eastern-European Journal of Enterprise Technologies, 1(9 (85), 53–60. https://doi.org/10.15587/1729-4061.2017.93179

Issue

Section

Information and controlling system