Implementation of the simplified communication mechanism in the cloud of high performance computations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.98896

Keywords:

mechanism of simplified communication, high-performance data processing, binary compatibility, cluster

Abstract

Constructing a system with traditional resources, based on the concept of high-performance computations (HPC) and data processing in the cloud, fully reveals new addressing problems. In the course of processing the data, it discovers many other unexplored scientific problems. One of these problems is to reduce the network expenditures on a virtual cluster in the cloud with HPC. In order to solve this problem, the work presented proposes a mechanism of simplified communication (SCM) to optimize the intra-cluster network performance, which intercepts packets at the level below that of network, and verifies whether it is meant for a coresident virtual machine. Compared with TCP, the introduced protocol of simplified communication (SCP) makes it possible to avoid the slow start phase, and to use a smaller header for a data packet, which improves the intra-domain and extra-domain throughput. To implement SCM inside the system, we also integrated XenLoop. A dispatched packet is sent through the FIFO channel, which is opened by XenLoop. This realization supports binary compatibility for the applications that use a standard socket interface. Throughput of the intra-domain communication in the system with SCM improves by about one and a half, while relative time of a reference test with a set of NAS-tags is lower. Experimental comparison of indicators for SCP and a protocol of remote memory access (RMAP) shows that SCP is 7.8–7.9 % faster than RMAP.

Author Biographies

Vasyl Melnyk, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

PhD, Associate Professor

Department of Computer Engineering 

Nataliya Bahnyuk, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

PhD, Associate Professor

Department of Computer Engineering 

Kateryna Melnyk, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

PhD, Associate Professor

Department of Computer Engineering 

Oksana Zhyharevych, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

Assistant

Department of Computer Engineering 

Natalia Panasyuk, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

PhD, Associate Professor

Department of Computer Technology

References

  1. Melnyk, V., Pekh, P., Melnyk, K., Bahnyuk, N., Zhyharevych, O. (2016). Design and implementation of inter-domain communication mechanism for high performance data processing. Eastern-European Journal of Enterprise Technologies, 1 (9 (79)), 10–15. doi: 10.15587/1729-4061.2016.60629
  2. Melnyk, V., Bahnyuk, N., Melnyk, K. (2015). Influence of high performance sockets on data processing intensity. ScienceRise, 6 (2 (11)), 38–48. doi: 10.15587/2313-8416.2015.44380
  3. Melnyk, V., Zhyharevych, O., Melnyk, K. (2015). High production of java sockets (HPJS) for helth clouds in science. Proceedings of National Aviation University, 64 (3). doi: 10.18372/2306-1472.64.9041
  4. Melnyk, V. M., Pekh, P. A., Melnyk, K. V., Zhyharevych, O. K. (2015). Significance of the socket programming for the laboratory with intensive data communications. Computer-integrated technologies: education, science and industry, 20, 67–71.
  5. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A. et. al. (2003). Xen and the art of virtualization. Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles – SOSP ’03. doi: 10.1145/945445.945462
  6. Pratt, I. (2007). Xen Virtualization. Linux world 2005 Virtualization BOF Presentation.
  7. Chisnall, D. (2007). The Definitive Guide to the Xen Hypervisor. Prentice Hall.
  8. Menon, A., Cox, A. L., Zwaenepoel, W.(2006). Optimizing network virtualization in Xen. In 2006 USENIX Annual Technical Conference. Boston, Massachusetts, USA, 15–28.
  9. Wang, J., Wright, K.-L., Gopalan, K. (2009). XenLoop: a transparent high performance inter-VM network loopback. Cluster Computing, 12 (2), 141–152. doi: 10.1007/s10586-009-0079-x
  10. Kim, K., Kim, C., Jung, S.-I., Shin, H.-S., Kim, J.-S. (2008). Inter-domain socket communications supporting high performance and full binary compatibility on Xen. Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments – VEE ’08. doi: 10.1145/1346256.1346259
  11. Amdahl's Law. Available at: http://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
  12. Liu, J., Huang, W., Abali, B., Panda, D. K. (2006). High Performance VMM-Bypass I/O in Virtual Machines. USENIX Annual Technical Conference archive.
  13. Hines, M. R., Gopalan, K. (2007). MemX. Proceedings of the 3rd International Workshop on Virtualization Technology in Distributed Computing – VTDC ’07. doi: 10.1145/1408654.1408656
  14. Deshpande, U., Wang, B., Haque, S., Hines, M., Gopalan, K. (2010). MemX: Virtualization of Cluster-Wide Memory. 2010 39th International Conference on Parallel Processing. doi: 10.1109/icpp.2010.74
  15. Kim, J.-S., Kim, K., Jung, S.-I., Ha, S. (2003). Design and implementation of a user-level Sockets layer over Virtual Interface Architecture. Concurrency and Computation: Practice and Experience, 15 (7-8), 727–749. doi: 10.1002/cpe.721
  16. Son, S., Kim, J., Lim, E., Jung, S. (2004). SOP: A Socket Interface for TOEs. In Internet and Multimedia Systems and Applications.
  17. Clark, D. D. (1982). Window and acknowledgement strategy in TCP. RFC 813. Internet Engineering Task Force. doi: 10.17487/rfc0813
  18. Menon, A., Santos, J. R., Turner, Y., Janakiraman, G. (John), Zwaenepoel, W. (2005). Diagnosing performance overheads in the xen virtual machine environment. Proceedings of the 1st ACM/USENIX International Conference on Virtual Execution Environments – VEE ’05. doi: 10.1145/1064979.1064984
  19. Network bandwidth testing. Available at: http://semenushkin.ru/2010/07/01/тестирование-пропускной-способности
  20. Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L. et. al. (1991). The Nas Parallel Benchmarks. International Journal of High Performance Computing Applications, 5 (3), 63–73. doi: 10.1177/109434209100500306
  21. Overview of some cluster performance measurement systems. Available at: http://www.ixbt.com/cpu/cluster-benchtheory.shtml
  22. Netperf: A Network Performance Benchmark. Revision 2.0. Hewlett-Packard Company. Available at: http://www.netperf.org/netperf/training/Netperf.html

Downloads

Published

2017-04-26

How to Cite

Melnyk, V., Bahnyuk, N., Melnyk, K., Zhyharevych, O., & Panasyuk, N. (2017). Implementation of the simplified communication mechanism in the cloud of high performance computations. Eastern-European Journal of Enterprise Technologies, 2(2 (86), 24–32. https://doi.org/10.15587/1729-4061.2017.98896