Пукач Петро Ярославович

Національний університет «Львівська політехніка», Україна
Доктор технічних наук, професор
Інститут прикладної математики та фундаментальних наук

Scopus profile: link
Researcher ID: R-4493-2017
Google Scholar profile:
link
ID ORCID: https://orcid.org/0000-0002-0359-5025

Основні публікації:

  1. Andrusyak, I., Brodyak, O., Pukach, P., Vovk, M. (2024). Mathematical Modeling of Cell Growth via Inverse Problem and Computational Approach. Computation, 12 (2), 26. https://doi.org/10.3390/computation12020026 

 

  1. Slipchuk, A. M., Pukach, P. Ya., Vovk, M. I., Slyusarchuk, O. Z. (2024). Study of the dynamic process in a nonlinear mathematical model of the transverse oscillations of a moving beam under perturbed boundary conditions. Mathematical Modeling and Computing, 11 (1), 37–49. https://doi.org/10.23939/mmc2024.01.037 

 

  1. Prykarpatskyy, Y. A., Pukach, P. Ya., Vovk, M. I., Greguš, M. (2024). Some Remarks on Smooth Mappings of Hilbert and Banach Spaces and Their Local Convexity Property. Axioms, 13 (4), 227. https://doi.org/10.3390/axioms13040227 

 

  1. Pukach, P. Y., Chernukha, Y. A. (2024). Mathematical modeling of impurity diffusion process under given statistics of a point mass sources system. I. Mathematical Modeling and Computing, 11 (2), 385–393. https://doi.org/10.23939/mmc2024.02.385 

 

  1. Chernukha, O., Pukach, P., Bilushchak, H., Bilushchak, Y., Vovk, M. (2024). Advanced Statistical Approach for the Mathematical Modeling of Transfer Processes in a Layer Based on Experimental Data at the Boundary. Symmetry, 16 (7), 802. https://doi.org/10.3390/sym16070802 

 

  1. Huzyk, N. M., Brodyak, O. Ya., Pukach, P. Ya., Vovk, M. I. (2024). Inverse free boundary problem for degenerate parabolic equation. Carpathian Mathematical Publications, 16 (1), 230–245. https://doi.org/10.15330/cmp.16.1.230-245 

 

  1. Pukach, P., Kvit, R., Salo, T., Vovk, M. (2023). A Probable Approach to Reliability Assessment of Reinforced Plates. Applied System Innovation, 6 (4), 73. doi: https://doi.org/10.3390/asi6040073

 

  1. Musii, R., Pukach, P., Melnyk, N., Vovk, M., Šlahor, L. (2023). Modeling of the Temperature Regimes in a Layered Bimetallic Plate under Short-Term Induction Heating. Energies, 16 (13), 4980. doi: https://doi.org/10.3390/en16134980

 

  1. Prykarpatski, A., Pukach, P., Vovk, M. (2023). Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability. Entropy, 25 (2), 308. doi: https://doi.org/10.3390/e25020308

 

  1. Huzyk, N. M., Pukach, P. Y., Vovk, M. I. (2023). Coefficient inverse problem for the strongly degenerate parabolic equation. Carpathian Mathematical Publications, 15 (1), 52–65. doi: https://doi.org/10.15330/cmp.15.1.52-65

 

  1. Slipchuk, A., Pukach, P., Vovk, M. (2023). Asymptotic Study of Longitudinal Velocity Influence and Nonlinear Elastic Characteristics of the Oscillating Moving Beam. Mathematics, 11 (2), 322. doi: https://doi.org/10.3390/math11020322

 

  1. Chernukha, O., Chuchvara, A., Bilushchak, Y., Pukach, P., Kryvinska, N. (2022). Mathematical Modelling of Diffusion Flows in Two-Phase Stratified Bodies with Randomly Disposed Layers of Stochastically Set Thickness. Mathematics, 10 (19), 3650. doi: https://doi.org/10.3390/math10193650

 

  1. Slipchuk, A., Pukach, P., Vovk, M., Slyusarchuk, O. (2022). Advancing asymptotic approaches to studying the longitudinal and torsional oscillations of a moving beam. Eastern-European Journal of Enterprise Technologies, 3 (7 (117)), 31–39. doi: https://doi.org/10.15587/1729-4061.2022.257439

 

  1. Prykarpatskyy, Y., Vovk, M., Pukach, P. (2022). Operator-valued Camassa–Holm systems and their integrability. Letters in Mathematical Physics, 112 (4). doi: https://doi.org/10.1007/s11005-022-01566-7

 

  1. Huzyk, N., Pukach, P., Sokil, B., Sokil, M., Vovk, M. (2022). On the external and internal resonance phenomena of the elastic bodies with the complex oscillations. Mathematical Modeling and Computing, 9 (1), 152–158. doi: https://doi.org/10.23939/mmc2022.01.152

 

  1. Sokil, B. I., Pukach, P. Ya., Sokil, M. B., Vovk, M. I. (2020). Advanced asymptotic approaches and perturbation theory methods in the study of the mathematical model of single-frequency oscillations of a nonlinear elastic body. Mathematical Modeling and Computing, 7 (2), 269–277. doi: https://doi.org/10.23939/mmc2020.02.269

 

  1. Pabyrivskyi, V. V., Pabyrivska, N. V., Pukach, P. Ya. (2020). The study of mathematical models of the linear theory of elasticity by presenting the fundamental solution in harmonic potentials. Mathematical Modeling and Computing, 7 (2), 259–268. doi: https://doi.org/10.23939/mmc2020.02.259

 

  1. Pabyrivskyi, V. V., Kuzio, I. V., Pabyrivska, N. V., Pukach, P. Ya. (2020). Two-dimensional elastic theory methods for describing the stress state and the modes of elastic boring. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 46–51. doi: https://doi.org/10.33271/nvngu/2020-1/046

 

  1. Nytrebych, Z., Ilkiv, V., Pukach, P., Malanchuk, O., Kohut, I., Senyk, A. (2019). Analytical method to study a mathematical model of wave processes under two­point time conditions. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 74–83. doi: https://doi.org/10.15587/1729-4061.2019.155148

 

  1. Grytsenko, О. M., Pukach, P. Ya., Suberlyak, O. V., Moravskyi, V. S., Kovalchuk, R. A., Berezhnyy, B. V. (2019). The Scheffe’s method in the study of mathematical model of the polymeric hydrogels composite structures optimization. Mathematical Modeling and Computing, 6 (2), 258–267. doi: https://doi.org/10.23939/mmc2019.02.258