Дослідження формування кобальтовмісних ПЕО-покривів на АК12М2МгН із дифосфатного електроліту

Автор(и)

  • Ann Karakurkchi Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-1287-3859
  • Mykola Sakhnenko Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-5525-9525
  • Maryna Ved Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0001-5719-6284
  • Andrii Horokhivskyi Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0003-1201-8630
  • Alexander Galak Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-2590-9291

DOI:

https://doi.org/10.15587/1729-4061.2017.118028

Ключові слова:

оксидний покрив, силумін, АК12М2МгН, плазмово-електролітичне оксидування, дифосфатний електроліт, морфологія поверхні

Анотація

Досліджено формування кобальтовмісних оксидних покривів методом плазмово-електролітичного оксидування силуміну АК12М2МгН у дифосфатних електролітах. Показано, що варіювання концентрації кобальту сульфату в розчині впливає на робочі параметри ПЕО. Встановлено, що склад та морфологія сформованих оксидних шарів залежать від співвідношення компонентів електроліту. Це дозволяє керувати процесом інкорпорації допанта в матрицю оксиду алюмінія. Обгрунтовано склад дифосфатного електроліту для одержання оксидних покривів, збагачених каталітичним компонентом

Біографії авторів

Ann Karakurkchi, Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002

Кандидат технічних наук, начальник науково-дослідної лабораторії

Науково-дослідна лабораторія факультету військової підготовки

Mykola Sakhnenko, Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002

Доктор технічних наук, професор, завідуючий кафедри

Кафедра фізичної хімії

Maryna Ved, Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002

Доктор технічних наук, професор

Кафедра загальної та неорганічної хімії

Andrii Horokhivskyi, Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002

Науковий співробітник

Науково-дослідна лабораторія факультету військової підготовки

Alexander Galak, Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002

Кандидат технічних наук

Кафедра фізичної хімії

Посилання

  1. Glazoff, M., Zolotorevsky V., Belov N. (2007). Casting Aluminum Alloys. Elsevier Science, 544 p.
  2. Suminov, I. V.; Belkin, P. N., Eperfel'd, A. V., Lyudin, V. B., Krit, B. L., Borisov, A. M.; Suminov, I. V. (Ed.) (2011). Plazmenno-elektroliticheskoe modifitsirovanie poverhnosti metallov i splavov. Vol. 2. Moscow: Tekhnosfera, 512.
  3. Gupta, P., Tenhundfeld, G., Daigle, E. O., Ryabkov, D. (2007). Electrolytic plasma technology: Science and engineering – An overview. Surface and Coatings Technology, 201 (21), 8746–8760. doi: 10.1016/j.surfcoat.2006.11.023
  4. Krishtal, M. M. (2009). Oxide Layer Formation by Micro-Arc Oxidation on Structurally Modified Al-Si Alloys and Applications for Large-Sized Articles Manufacturing. Advanced Materials Research. 59, 204–208. doi:10.4028/www.scientific.net/AMR.59.204
  5. Rudnev, V. S., Lukiyanchuk, I. V., Vasilyeva, M. S., Medkov, M. A., Adigamova, M. V., Sergienko, V. I. (2016). Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surface and Coatings Technology, 307, 1219–1235. doi: 10.1016/j.surfcoat.2016.07.060
  6. Ved, M., Glushkova, M., Sakhnenko, N. (2013). Catalytic properties of binary and ternary alloys based on silver. Functional Materials, 20 (1), 87–91. doi: 10.15407/fm20.01.087
  7. Rogov, A. B., Slonova, A. I., Shayapov, V. R. (2012). Peculiarities of iron-containing microplasma coating deposition on aluminum in homogeneous electrolyte. Applied Surface Science, 261, 647–652. doi: 10.1016/j.apsusc.2012.08.075
  8. Malyshev, V. N., Zorin, K. M. (2007). Features of microarc oxidation coatings formation technology in slurry electrolytes. Applied Surface Science, 254 (5), 1511–1516. doi: 10.1016/j.apsusc.2007.07.079
  9. Borisov, A. M., Krit, B. L., Lyudin, V. B., Morozova, N. V., Suminov, I. V., Apelfeld, A. V. (2016). Microarc oxidation in slurry electrolytes: A review. Surface Engineering and Applied Electrochemistry, 52 (1), 50–78. doi: 10.3103/s106837551601004x
  10. Sakhnenko, N., Ved, M., Karakurkchi, A., Galak, A. (2016). A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0. Eastern-European Journal of Enterprise Technologies, 3 (5 (81)), 37–43. doi: 10.15587/1729-4061.2016.69390
  11. Rokosz, K., Hryniewicz, T., Raaen, S., Chapon, P., Dudek, Ł. (2016). GDOES, XPS, and SEM with EDS analysis of porous coatings obtained on titanium after plasma electrolytic oxidation. Surface and Interface Analysis, 49 (4), 303–315. doi: 10.1002/sia.6136
  12. Sakhnenko, N. D., Ved, M. V., Bykanova, V. V. (2014). Characterization and photocatalytic activity of Ti/TinOm∙ZrxOy coatings for azo-dye degradation. Functional materials, 21 (4), 492–497. doi: 10.15407/fm21.04.492
  13. Rudnev, V. S., Morozova, V. P., Kaidalova, T. A., Nedozorov, P. M. (2007). Iron- and nickel-containing oxide-phosphate layers on aluminum and titanium. Russian Journal of Inorganic Chemistry, 52 (9), 1350–1354. doi: 10.1134/s0036023607090069
  14. Li, H. X., Rudnev, V. S., Zheng, X. H., Yarovaya, T. P., Song, R. G. (2008). Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation. Journal of Alloys and Compounds, 462 (1-2), 99–102. doi: 10.1016/j.jallcom.2007.08.046
  15. Sakhnenko, M., Karakurkchi, A., Galak, A., Menshov, S., Matykin, O. (2017). Examining the formation and properties of TiO2 oxide coatings with metals of iron triad. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 4–10. doi: 10.15587/1729-4061.2017.97550
  16. Lukiyanchuk, I. V., Rudnev, V. S., Tyrina, L. M. (2016). Plasma electrolytic oxide layers as promising systems for catalysis. Surface and Coatings Technology, 307, 1183–1193. doi: 10.1016/j.surfcoat.2016.06.076
  17. Dehnavi, V., Luan, B. L., Liu, X. Y., Shoesmith, D. W., Rohani, S. (2013). Production of ceramic coatings on AA6061 aluminium alloy using plasma electrolytic oxidation. Materials Science and Technology (MS&T 2013) Conference. Montreal, 2247–2254.
  18. Xue, W., Shi, X., Hua, M., Li, Y. (2007). Preparation of anti-corrosion films by microarc oxidation on an Al–Si alloy. Applied Surface Science, 253 (14), 6118–6124. doi: 10.1016/j.apsusc.2007.01.018
  19. Xu, F., Xia, Y., Li, G. (2009). The mechanism of PEO process on Al–Si alloys with the bulk primary silicon. Applied Surface Science, 255 (23), 9531–9538. doi: 10.1016/j.apsusc.2009.07.090
  20. Wang, P., Li, J. P., Guo, Y. C., Yang, Z., Wang, J. L. (2016). Ceramic coating formation on high Si containing Al alloy by PEO process. Surface Engineering, 32 (6), 428–434. doi: 10.1179/1743294415y.0000000003
  21. Dudareva, N. Y., Abramova, M. M. (2016). The Structure of Plasma-Electrolytic Coating Formed on Al–Si alloys by the Micro-Arc Oxidation Method. Protection of Metals and Physical Chemistry of Surfaces, 52 (1), 128–132. doi: 10.1134/s2070205116010093
  22. Dai, L., Li, W., Zhang, G., Fu, N., Duan, Q. (2017). Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode. IOP Conference Series: Materials Science and Engineering, 167, 012063. doi: 10.1088/1757-899x/167/1/012063
  23. Rogov, A. B. (2015). Plasma electrolytic oxidation of A1050 aluminium alloy in homogeneous silicate-alkaline electrolytes with edta 4− complexes of Fe, Co, Ni, Cu, La and Ba under alternating polarization conditions. Materials Chemistry and Physics, 167, 136–144. doi: 10.1016/j.matchemphys.2015.10.020
  24. Boguta, D. L., Rudnev, V. S., Yarovaya, T. P., Kaidalova, T. A., Gordienko, P. S. (2002). On Composition of Anodic-Spark Coatings Formed on Aluminum Alloys in Electrolytes with Polyphosphate Complexes of Metals. Russian Journal of Applied Chemistry, 75 (10), 1605–1608. doi: 10.1023/a:1022263331315
  25. Rudnev, V. S. (2008). Multiphase anodic layers and prospects of their application. Protection of Metals, 44 (3), 263–272. doi: 10.1134/s0033173208030089
  26. Ved’, M. V., Sakhnenko, N. D., Karakurkchi, A. V., Myrna, T. Yu. (2017). Functional mixed cobalt and aluminum oxide coatings for environmental safety. Functional Materials, 24 (2), 303–310. doi: 10.15407/fm24.02.303
  27. Rakoch, A. G., Khokhlov, V. V., Bautin, V. A., Lebedeva, N. A., Magurova, Y. V., Bardin, I. V. (2006). Model concepts on the mechanism of microarc oxidation of metal materials and the control over this process. Protection of Metals, 42 (2), 158–169. doi: 10.1134/s003317320602010x
  28. Ved’, M. V., Sakhnenko, M. D., Bohoyavlens’ka, O. V., Nenastina, T. O. (2008). Modeling of the surface treatment of passive metals. Materials Science, 44 (1), 79–86. doi: 10.1007/s11003-008-9046-6
  29. Sakhnenko, N. D., Ved’, M. V., Androshchuk, D. S., Korniy, S. A. (2016). Formation of coatings of mixed aluminum and manganese oxides on the AL25 alloy. Surface Engineering and Applied Electrochemistry, 52 (2), 145–151. doi: 10.3103/s1068375516020113
  30. Cho, J.-Y., Hwang, D.-Y., Lee, D.-H., Yoo, B., Shin, D.-H. (2009). Influence of potassium pyrophosphate in electrolyte on coated layer of AZ91 Mg alloy formed by plasma electrolytic oxidation. Transactions of Nonferrous Metals Society of China, 19 (4), 824–828. doi: 10.1016/s1003-6326(08)60358-1
  31. Sakhnenko, N. D., Ved, M. V., Karakurkchi, A. V. (2017). Nanoscale Oxide PEO Coatings Forming from Diphosphate Electrolytes. Nanophysics, Nanomaterials, Interface Studies, and Applications: Selected Proceedings of the 4th International Conference Nanotechnology and Nanomaterials (NANO-2016). Springer International Publishing AG, 159–184. doi: 10.1007/978-3-319-56422-7_38
  32. Yar-Mukhamedova, G. Sh., Ved, M. V., Karakurkchi, A. V., Sakhnenko, N. D. (2017). Mixed alumina and cobalt containing plasma electrolytic oxide coatings. IOP Conference Series: Materials Science and Engineering, 213, 012020. doi: 10.1088/1757-899x/213/1/012020
  33. Senesi, G. S., Massaro, A. (2016). AFM Applications to the Analysis of Plasma-Treated Surface Growth and Nanocomposite Materials. Current Nanoscience, 12 (2), 202–206. doi: 10.2174/1573413711666150928194029
  34. Karakurkchi, A., Sakhnenko, M., Ved, M., Galak, A., Petrukhin, S. (2017). Application of oxide-metallic catalysts on valve metals for ecological catalysis. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 12–18. doi: 10.15587/1729-4061.2017.109885

##submission.downloads##

Опубліковано

2017-12-11

Як цитувати

Karakurkchi, A., Sakhnenko, M., Ved, M., Horokhivskyi, A., & Galak, A. (2017). Дослідження формування кобальтовмісних ПЕО-покривів на АК12М2МгН із дифосфатного електроліту. Eastern-European Journal of Enterprise Technologies, 6(12 (90), 19–27. https://doi.org/10.15587/1729-4061.2017.118028

Номер

Розділ

Матеріалознавство