Дослідження формування кобальтовмісних ПЕО-покривів на АК12М2МгН із дифосфатного електроліту
DOI:
https://doi.org/10.15587/1729-4061.2017.118028Ключові слова:
оксидний покрив, силумін, АК12М2МгН, плазмово-електролітичне оксидування, дифосфатний електроліт, морфологія поверхніАнотація
Досліджено формування кобальтовмісних оксидних покривів методом плазмово-електролітичного оксидування силуміну АК12М2МгН у дифосфатних електролітах. Показано, що варіювання концентрації кобальту сульфату в розчині впливає на робочі параметри ПЕО. Встановлено, що склад та морфологія сформованих оксидних шарів залежать від співвідношення компонентів електроліту. Це дозволяє керувати процесом інкорпорації допанта в матрицю оксиду алюмінія. Обгрунтовано склад дифосфатного електроліту для одержання оксидних покривів, збагачених каталітичним компонентом
Посилання
- Glazoff, M., Zolotorevsky V., Belov N. (2007). Casting Aluminum Alloys. Elsevier Science, 544 p.
- Suminov, I. V.; Belkin, P. N., Eperfel'd, A. V., Lyudin, V. B., Krit, B. L., Borisov, A. M.; Suminov, I. V. (Ed.) (2011). Plazmenno-elektroliticheskoe modifitsirovanie poverhnosti metallov i splavov. Vol. 2. Moscow: Tekhnosfera, 512.
- Gupta, P., Tenhundfeld, G., Daigle, E. O., Ryabkov, D. (2007). Electrolytic plasma technology: Science and engineering – An overview. Surface and Coatings Technology, 201 (21), 8746–8760. doi: 10.1016/j.surfcoat.2006.11.023
- Krishtal, M. M. (2009). Oxide Layer Formation by Micro-Arc Oxidation on Structurally Modified Al-Si Alloys and Applications for Large-Sized Articles Manufacturing. Advanced Materials Research. 59, 204–208. doi:10.4028/www.scientific.net/AMR.59.204
- Rudnev, V. S., Lukiyanchuk, I. V., Vasilyeva, M. S., Medkov, M. A., Adigamova, M. V., Sergienko, V. I. (2016). Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surface and Coatings Technology, 307, 1219–1235. doi: 10.1016/j.surfcoat.2016.07.060
- Ved, M., Glushkova, M., Sakhnenko, N. (2013). Catalytic properties of binary and ternary alloys based on silver. Functional Materials, 20 (1), 87–91. doi: 10.15407/fm20.01.087
- Rogov, A. B., Slonova, A. I., Shayapov, V. R. (2012). Peculiarities of iron-containing microplasma coating deposition on aluminum in homogeneous electrolyte. Applied Surface Science, 261, 647–652. doi: 10.1016/j.apsusc.2012.08.075
- Malyshev, V. N., Zorin, K. M. (2007). Features of microarc oxidation coatings formation technology in slurry electrolytes. Applied Surface Science, 254 (5), 1511–1516. doi: 10.1016/j.apsusc.2007.07.079
- Borisov, A. M., Krit, B. L., Lyudin, V. B., Morozova, N. V., Suminov, I. V., Apelfeld, A. V. (2016). Microarc oxidation in slurry electrolytes: A review. Surface Engineering and Applied Electrochemistry, 52 (1), 50–78. doi: 10.3103/s106837551601004x
- Sakhnenko, N., Ved, M., Karakurkchi, A., Galak, A. (2016). A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0. Eastern-European Journal of Enterprise Technologies, 3 (5 (81)), 37–43. doi: 10.15587/1729-4061.2016.69390
- Rokosz, K., Hryniewicz, T., Raaen, S., Chapon, P., Dudek, Ł. (2016). GDOES, XPS, and SEM with EDS analysis of porous coatings obtained on titanium after plasma electrolytic oxidation. Surface and Interface Analysis, 49 (4), 303–315. doi: 10.1002/sia.6136
- Sakhnenko, N. D., Ved, M. V., Bykanova, V. V. (2014). Characterization and photocatalytic activity of Ti/TinOm∙ZrxOy coatings for azo-dye degradation. Functional materials, 21 (4), 492–497. doi: 10.15407/fm21.04.492
- Rudnev, V. S., Morozova, V. P., Kaidalova, T. A., Nedozorov, P. M. (2007). Iron- and nickel-containing oxide-phosphate layers on aluminum and titanium. Russian Journal of Inorganic Chemistry, 52 (9), 1350–1354. doi: 10.1134/s0036023607090069
- Li, H. X., Rudnev, V. S., Zheng, X. H., Yarovaya, T. P., Song, R. G. (2008). Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation. Journal of Alloys and Compounds, 462 (1-2), 99–102. doi: 10.1016/j.jallcom.2007.08.046
- Sakhnenko, M., Karakurkchi, A., Galak, A., Menshov, S., Matykin, O. (2017). Examining the formation and properties of TiO2 oxide coatings with metals of iron triad. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 4–10. doi: 10.15587/1729-4061.2017.97550
- Lukiyanchuk, I. V., Rudnev, V. S., Tyrina, L. M. (2016). Plasma electrolytic oxide layers as promising systems for catalysis. Surface and Coatings Technology, 307, 1183–1193. doi: 10.1016/j.surfcoat.2016.06.076
- Dehnavi, V., Luan, B. L., Liu, X. Y., Shoesmith, D. W., Rohani, S. (2013). Production of ceramic coatings on AA6061 aluminium alloy using plasma electrolytic oxidation. Materials Science and Technology (MS&T 2013) Conference. Montreal, 2247–2254.
- Xue, W., Shi, X., Hua, M., Li, Y. (2007). Preparation of anti-corrosion films by microarc oxidation on an Al–Si alloy. Applied Surface Science, 253 (14), 6118–6124. doi: 10.1016/j.apsusc.2007.01.018
- Xu, F., Xia, Y., Li, G. (2009). The mechanism of PEO process on Al–Si alloys with the bulk primary silicon. Applied Surface Science, 255 (23), 9531–9538. doi: 10.1016/j.apsusc.2009.07.090
- Wang, P., Li, J. P., Guo, Y. C., Yang, Z., Wang, J. L. (2016). Ceramic coating formation on high Si containing Al alloy by PEO process. Surface Engineering, 32 (6), 428–434. doi: 10.1179/1743294415y.0000000003
- Dudareva, N. Y., Abramova, M. M. (2016). The Structure of Plasma-Electrolytic Coating Formed on Al–Si alloys by the Micro-Arc Oxidation Method. Protection of Metals and Physical Chemistry of Surfaces, 52 (1), 128–132. doi: 10.1134/s2070205116010093
- Dai, L., Li, W., Zhang, G., Fu, N., Duan, Q. (2017). Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode. IOP Conference Series: Materials Science and Engineering, 167, 012063. doi: 10.1088/1757-899x/167/1/012063
- Rogov, A. B. (2015). Plasma electrolytic oxidation of A1050 aluminium alloy in homogeneous silicate-alkaline electrolytes with edta 4− complexes of Fe, Co, Ni, Cu, La and Ba under alternating polarization conditions. Materials Chemistry and Physics, 167, 136–144. doi: 10.1016/j.matchemphys.2015.10.020
- Boguta, D. L., Rudnev, V. S., Yarovaya, T. P., Kaidalova, T. A., Gordienko, P. S. (2002). On Composition of Anodic-Spark Coatings Formed on Aluminum Alloys in Electrolytes with Polyphosphate Complexes of Metals. Russian Journal of Applied Chemistry, 75 (10), 1605–1608. doi: 10.1023/a:1022263331315
- Rudnev, V. S. (2008). Multiphase anodic layers and prospects of their application. Protection of Metals, 44 (3), 263–272. doi: 10.1134/s0033173208030089
- Ved’, M. V., Sakhnenko, N. D., Karakurkchi, A. V., Myrna, T. Yu. (2017). Functional mixed cobalt and aluminum oxide coatings for environmental safety. Functional Materials, 24 (2), 303–310. doi: 10.15407/fm24.02.303
- Rakoch, A. G., Khokhlov, V. V., Bautin, V. A., Lebedeva, N. A., Magurova, Y. V., Bardin, I. V. (2006). Model concepts on the mechanism of microarc oxidation of metal materials and the control over this process. Protection of Metals, 42 (2), 158–169. doi: 10.1134/s003317320602010x
- Ved’, M. V., Sakhnenko, M. D., Bohoyavlens’ka, O. V., Nenastina, T. O. (2008). Modeling of the surface treatment of passive metals. Materials Science, 44 (1), 79–86. doi: 10.1007/s11003-008-9046-6
- Sakhnenko, N. D., Ved’, M. V., Androshchuk, D. S., Korniy, S. A. (2016). Formation of coatings of mixed aluminum and manganese oxides on the AL25 alloy. Surface Engineering and Applied Electrochemistry, 52 (2), 145–151. doi: 10.3103/s1068375516020113
- Cho, J.-Y., Hwang, D.-Y., Lee, D.-H., Yoo, B., Shin, D.-H. (2009). Influence of potassium pyrophosphate in electrolyte on coated layer of AZ91 Mg alloy formed by plasma electrolytic oxidation. Transactions of Nonferrous Metals Society of China, 19 (4), 824–828. doi: 10.1016/s1003-6326(08)60358-1
- Sakhnenko, N. D., Ved, M. V., Karakurkchi, A. V. (2017). Nanoscale Oxide PEO Coatings Forming from Diphosphate Electrolytes. Nanophysics, Nanomaterials, Interface Studies, and Applications: Selected Proceedings of the 4th International Conference Nanotechnology and Nanomaterials (NANO-2016). Springer International Publishing AG, 159–184. doi: 10.1007/978-3-319-56422-7_38
- Yar-Mukhamedova, G. Sh., Ved, M. V., Karakurkchi, A. V., Sakhnenko, N. D. (2017). Mixed alumina and cobalt containing plasma electrolytic oxide coatings. IOP Conference Series: Materials Science and Engineering, 213, 012020. doi: 10.1088/1757-899x/213/1/012020
- Senesi, G. S., Massaro, A. (2016). AFM Applications to the Analysis of Plasma-Treated Surface Growth and Nanocomposite Materials. Current Nanoscience, 12 (2), 202–206. doi: 10.2174/1573413711666150928194029
- Karakurkchi, A., Sakhnenko, M., Ved, M., Galak, A., Petrukhin, S. (2017). Application of oxide-metallic catalysts on valve metals for ecological catalysis. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 12–18. doi: 10.15587/1729-4061.2017.109885
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2017 Ann Karakurkchi, Mykola Sakhnenko, Maryna Ved, Andrii Horokhivskyi, Alexander Galak
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.