Параметрична ідентифікація нечіткої моделі силового трансформатора на основі даних реальної експлуатації

Автор(и)

  • Eugen Bardyk Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» пр. Перемоги, 37, м. Київ, Україна, 03056, Україна https://orcid.org/0000-0002-5776-1500
  • Nickolai Bolotnyi Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» пр. Перемоги, 37, м. Київ, Україна, 03056, Україна https://orcid.org/0000-0002-7366-2430

DOI:

https://doi.org/10.15587/1729-4061.2017.118632

Ключові слова:

силовий трансформатор, хроматографічний аналіз розчиненого газу (ХАРГ), оцінка технічного стану, нечітка модель, функція належності

Анотація

Розроблено математичну модель оцінки технічного стану силового трансформатора на основі нечіткої логіки. Запропоновано метод нелінійної оптимізації для налаштування параметрів моделі, який підвищує точність нечіткого моделювання оцінки технічного стану силового трансформатора. Проведено адаптацію нечіткої моделі до реальних умов експлуатації і виконано порівняльний аналіз результатів нечіткого моделювання оцінки технічного стану силового трансформатора

Біографії авторів

Eugen Bardyk, Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» пр. Перемоги, 37, м. Київ, Україна, 03056

Кандидат технічних наук, доцент, завідувач кафедри

Кафедра електричних станцій

Nickolai Bolotnyi, Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» пр. Перемоги, 37, м. Київ, Україна, 03056

Аспірант

Кафедра електричних станцій

Посилання

  1. Duval, M. (2013). Smart Grid Monitoring of Transformers by DGA. CIGRE Thailand, Bangkok, 67.
  2. IEC 60599. Mineral oil-impregnated electrical equipment in service. Guide to the interpretation of dissolved and free gases analysis (2015). International Electrotechnical Commission, 78.
  3. Sankar, B., Cherian, E., Aryanandiny, B. (2013). Condition monitoring and assessment of power transformers for reliability enhancement – a review. International Journal of Advances in Engineering Research, 4 (1), 12–25.
  4. Wouters, P., van Schijndel, A., Wetzer, J. (2010). Remaining lifetime modelling of power transformers on individual and population level. 2010 10th IEEE International Conference on Solid Dielectrics. doi: 10.1109/icsd.2010.5568112
  5. Jarman, P., Wang, Z., Zhong, Q., Ishak, T. (2009). End-of-life modelling for power transformers in aged power system networks. CIGRE-2009 6th Southern Africa Regional Conference, 1–7.
  6. Malik, H., Yadav, A. K., Mishra, S., Mehto, T. (2013). Application of neuro-fuzzy scheme to investigate the winding insulation paper deterioration in oil-immersed power transformer. International Journal of Electrical Power & Energy Systems, 53, 256–271. doi: 10.1016/j.ijepes.2013.04.023
  7. Muhamad, N. A., Phung, B. T., Blackburn, T. R. (2007). Comparative study and analysis of DGA methods for mineral oil using fuzzy logic. International conference on power engineering, 1301–1306.
  8. Taha, I. B. M., Ghoneim, S. S. M., Duaywah, A. S. A. (2016). Refining DGA methods of IEC Code and Rogers four ratios for transformer fault diagnosis. 2016 IEEE Power and Energy Society General Meeting (PESGM). doi: 10.1109/pesgm.2016.7741157
  9. Singh, J., Sood, Y., Jarial, R. (2008). Condition Monitoring of Power Transformers – Bibliography Survey. IEEE Electrical Insulation Magazine, 24 (3), 11–25. doi: 10.1109/mei.2008.4591431
  10. The duval pentagon-a new complementary tool for the interpretation of dissolved gas analysis in transformers (2014). IEEE Electrical Insulation Magazine, 30 (6), 9–12. doi: 10.1109/mei.2014.6943428
  11. Sun, H.-C., Huang, Y.-C., Huang, C.-M. (2012). A Review of Dissolved Gas Analysis in Power Transformers. Energy Procedia, 14, 1220–1225. doi: 10.1016/j.egypro.2011.12.1079
  12. Hooshmand, R., Parastegari, M., Forghani, Z. (2012). Adaptive neuro-fuzzy inference system approach for simultaneous diagnosis of the type and location of faults in power transformers. IEEE Electrical Insulation Magazine, 28 (5), 32–42. doi: 10.1109/mei.2012.6268440
  13. Abu-Siada, A., Islam, S. (2012). A new approach to identify power transformer criticality and asset management decision based on dissolved gas-in-oil analysis. IEEE Transactions on Dielectrics and Electrical Insulation, 19 (3), 1007–1012. doi: 10.1109/tdei.2012.6215106
  14. Sun, H.-C., Huang, Y.-C., Huang, C.-M. (2012). Fault Diagnosis of Power Transformers Using Computational Intelligence: A Review. Energy Procedia, 14, 1226–1231. doi: 10.1016/j.egypro.2011.12.1080
  15. Meng, K., Dong, Z. Y., Wang, D. H., Wong, K. P. (2010). A Self-Adaptive RBF Neural Network Classifier for Transformer Fault Analysis. IEEE Transactions on Power Systems, 25 (3), 1350–1360. doi: 10.1109/tpwrs.2010.2040491
  16. Chen, W., Pan, C., Yun, Y., Liu, Y. (2009). Wavelet Networks in Power Transformers Diagnosis Using Dissolved Gas Analysis. IEEE Transactions on Power Delivery, 24 (1), 187–194. doi: 10.1109/tpwrd.2008.2002974
  17. Naresh, R., Sharma, V., Vashisth, M. (2008). An Integrated Neural Fuzzy Approach for Fault Diagnosis of Transformers. IEEE Transactions on Power Delivery, 23 (4), 2017–2024. doi: 10.1109/tpwrd.2008.2002652
  18. Ghoneim, S. S. M., Taha, I. B. M., Elkalashy, N. I. (2016). Integrated ANN-based proactive fault diagnostic scheme for power transformers using dissolved gas analysis. IEEE Transactions on Dielectrics and Electrical Insulation, 23 (3), 1838–1845. doi: 10.1109/tdei.2016.005301
  19. Malik, H., Tarkeshwar, Jarial, R. K. (2011). An Expert System for Incipient Fault Diagnosis and Condition Assessment in Transformers. 2011 International Conference on Computational Intelligence and Communication Networks. doi: 10.1109/cicn.2011.27
  20. Da Silva, A. C. M., Garcez Castro, A. R., Miranda, V. (2012). Transformer failure diagnosis by means of fuzzy rules extracted from Kohonen Self-Organizing Map. International Journal of Electrical Power & Energy Systems, 43 (1), 1034–1042. doi: 10.1016/j.ijepes.2012.06.027
  21. Kosterev, N., Bardyk, E. (2011). The issue of building fuzzy models of evaluating the technical condition of the objects of electrical systems. Kyiv: NTUU «KPI», 112.
  22. Bardyk, E. I., Kosterev, N. V., Bolotnyi, N. P. (2013). Fuzzy power transformer simulation for risk assessment of failure at the presence damage. Proceedings of the Institute of Electrodynamics of National Academy of Sciences of Ukraine, 189–198.
  23. Kim, Y. M., Lee, S. J., Seo, H. D., Jung, J. R., Yang, H. J. (2012). Development of dissolved gas analysis(DGA) expert system using new diagnostic algorithm for oil-immersed transformers. 2012 IEEE International Conference on Condition Monitoring and Diagnosis. doi: 10.1109/cmd.2012.6416455
  24. Ghoneim, S., Merabtine, N. (2013). Early Stage Transformer Fault Detection Based on Expertise Method. International Journal of Electrical Electronics and Telecommunication Engineering, 44, 1289–1294.
  25. Hooshmand, R.-A., Banejad, M. (2008). Fuzzy Logic Application in Fault Diagnosis of Transformers Using Dissolved Gases. Journal of Electrical Engineering and Technology, 3 (3), 293–299. doi: 10.5370/jeet.2008.3.3.293
  26. Bardyk, E. I., Kosterev, V., Vozhakov, R. V., Bolotnyi, N. P. (2012). Tehnical condition assessment and service lifetime prediction of power transformer based on fuzzy sets theory. Visnyk of Vinnytsia Politechnical Institute, 2, 83–87.
  27. IEC Guide to interpretation of dissolved and free gases analysis (2007). New York: IEEE Press, 72.
  28. Lopez, C. P. (2014). MATLAB optimization techniques. Apress, 301. doi: 10.1007/978-1-4842-0292-0
  29. Bardyk, E. I., Kosterev, N. V., Bolotnyi, N. P. (2014). Improving reliability of operation of power companies on the basis of risk assessment of emergency situations at the failures of electrical equipment. Proceedings of the Institute of Electrodynamics of National Academy of Sciences of Ukraine, 13–20.

##submission.downloads##

Опубліковано

2017-12-15

Як цитувати

Bardyk, E., & Bolotnyi, N. (2017). Параметрична ідентифікація нечіткої моделі силового трансформатора на основі даних реальної експлуатації. Eastern-European Journal of Enterprise Technologies, 6(8 (90), 4–10. https://doi.org/10.15587/1729-4061.2017.118632

Номер

Розділ

Енергозберігаючі технології та обладнання