Теоретико-прикладні аспекти використання ефекту теплового насоса в газопровідних системах
DOI:
https://doi.org/10.15587/1729-4061.2018.121667Ключові слова:
газотранспортна система, міжниткова перемичка, дросель–ефект, трасовий тепловий насос, електрогідравлічна аналогіяАнотація
На основі класичного методу розрахунку параметрів газопровідних мереж з використанням електрогідравлічної аналогії розроблена математична модель обʼєкту – процесу транспортування газу в промисловому трубопроводі. Предмет дослідження – зміна температури після проходження газом міжниккового дроселюючого пристрою, що викликає ефект теплового насосу в приймаючій нитці газопроводу. Запропоновано використати трасовогазодинамічні теплові насоси для мінімізації ризику корко– та гідратоутворення в УМГ «Харківстрансгаз»
Посилання
- Fesenko, Y. L., Kryvulia, S. V., Syniuk, B. B., Fyk, M. I. (2013). Applied aspects of maintaining gas production in a gas condensate production field at a late stage of operation. NAFTA-GAZ, 69 (10), 751–760.
- Kutia, M., Fyk, M., Kravchenko, O., Palis, S., Fyk, I. (2016). Improvement of technological-mathematical model for the medium-term prediction of the work of a gas condensate field. Eastern-European Journal of Enterprise Technologies, 5 (8 (83)), 40–48. doi: 10.15587/1729-4061.2016.80073
- Domschke, P., Kolb, O., Lang, J. (2015). Adjoint-based error control for the simulation and optimization of gas and water supply networks. Applied Mathematics and Computation, 259, 1003–1018. doi: 10.1016/j.amc.2015.03.029
- Denisova, A. E., Troitskiy, A. N. (2011). Algoritm rascheta teplofizicheskih parametrov gruntovogo teploobmennika dlya teplovogo nasosa. Energotekhnologii i resursosberezhenie, 1, 8–12.
- Midttømme, K., Banks, D., Ramstad, R., Sæther, O., Skarphagen, H. (2008). Ground-Source Heat Pumps and Underground Thermal Energy Storage. Energy for the future, 11, 93–98.
- Bertani, R. (2015). Geothermal Power Generation in the World 2010–2014 Update Report. Proceedings World Geothermal Congress 2015.
- Chwieduk, D. A. (2012). Solar-Assisted Heat Pumps. Comprehensive Renewable Energy, 495–528. doi: 10.1016/b978-0-08-087872-0.00321-8
- Chaczykowski, M. (2010). Transient flow in natural gas pipeline – The effect of pipeline thermal model. Applied Mathematical Modelling, 34 (4), 1051–1067. doi: 10.1016/j.apm.2009.07.017
- Oosterkamp, A., Ytrehus, T., Galtung, S. T. (2016). Effect of the choice of boundary conditions on modelling ambient to soil heat transfer near a buried pipeline. Applied Thermal Engineering, 100, 367–377. doi: 10.1016/j.applthermaleng.2016.01.057
- Ghajar, A. J. (2005). Non-boiling heat transfer in gas-liquid flow in pipes: a tutorial. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27 (1), 46–73. doi: 10.1590/s1678-58782005000100004
- Pistun, Y., Matiko, F., Masnyak, O. (2015). Simplified Method for Calculation of the Joule-Thomson Coefficient at Natural Gas Flowrate Measurement. Energy Engineering and Control Systems, 1 (2), 127–132. doi: 10.23939/jeecs2015.02.127
- Maric, I., Ivek, I. (2010). Compensation for Joule–Thomson effect in flowrate measurements by GMDH polynomial. Flow Measurement and Instrumentation, 21 (2), 134–142. doi: 10.1016/j.flowmeasinst.2010.01.009
- Syed A. (2013). Preventing Hydrate Formation in Gas Transporting Pipelines with Synthetic Inhibitors. International Journal of Chemistry.
- Shanbi, P. (2013). The Simulation of Natural Gas Gathering Pipeline Network. The Open Fuels & Energy Science Journal, 6 (1), 18–22. doi: 10.2174/1876973x20130827002
- Ebrahimi, M., Torshizi, S. E. M. (2012). Optimization of power generation from a set of low-temperature abandoned gas wells, using organic Rankine cycle. Journal of Renewable and Sustainable Energy, 4 (6), 063133. doi: 10.1063/1.4768812
- Liu, E., Li, C., Yang, Y. (2014). Optimal Energy Consumption Analysis of Natural Gas Pipeline. The Scientific World Journal, 2014, 1–8. doi: 10.1155/2014/506138
- Domschkea, P., Duac, A., Stolwijkc, J. J., Langa, J., Mehrmannc, V. (2017). Adaptive Refinement Strategies for the Simulation of Gas Flow in Networks using a Model Hierarchy. arXiv.org. Available at: https://arxiv.org/pdf/1701.09031.pdf
- Liu, S., Dai, S., Ding, Q., Hu, L., Wang, Q. (2017). Fast Calculation Method of Energy Flow for Combined Electro-Thermal System and Its Application. Energy and Power Engineering, 09 (04), 376–389. doi: 10.4236/epe.2017.94b043
- Sarbu, I., Sebarchievici, C. (2014). General review of ground-source heat pump systems for heating and cooling of buildings. Energy and Buildings, 70, 441–454. doi: 10.1016/j.enbuild.2013.11.068
- Orga, A. C., Obibuenyi, J. I., Nwozuzu, M. (2017). An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Prediction and Detection of Condensate/Hydrate Formation Conditions. IOSR Journal of Applied Chemistry, 10 (03), 33–39. doi: 10.9790/5736-1003013339
- Pouladi, N., Heitmann, H. (2017). Simulation of steady flow of natural gas in a subsea flexible riser with heat exchange. Journal of Natural Gas Science and Engineering, 46, 533–543. doi: 10.1016/j.jngse.2017.08.012
- Mikolajková, M., Haikarainen, C., Saxén, H., Pettersson, F. (2017). Optimization of a natural gas distribution network with potential future extensions. Energy, 125, 848–859. doi: 10.1016/j.energy.2016.11.090
- Fyk, M. I. (2008). Do pytannia rozrakhuvannia hazodynamichnykh parametriv potoku hazu v mizhnytkovii peremychtsi mahistralnoho hazoprovodu. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 4 (29), 80–82.
- Mikolajková, M., Pettersson, F., Saxen, H. (2017). Linearized model of pipeline distribution of gas to a local market. Conference: ECOS 2017 International conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, At San Diego, Vol. 1. San Diego, 1–12.
- Rotov, A. A., Istomin, V. A., Mitnitsky, R. A., Kolinchenko, I. V. (2016). Features of thermal modes of gas gathering systems at a late stage of Development of the cenomanian deposits in the Urengoyskoye field. Transport and storage of oil products and hydrocarbons, 3, 46–52.
- Seleznev, V. E., Aleshin, V. V., Pryalov, S. N. (2009). Osnovy chislennogo modelirovaniya magistral'nyh truboprovodov. Moscow: MAKS Press, 436.
- Biletsky, V., Sergeyev, P., Krut, O. (2013). Fundamentals of highly loaded coal-water slurries. Mining of Mineral Deposits. CRC Press Taylor & Francis Group, London, 105–113. doi: 10.1201/b16354-20
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2018 Mykhailo Fyk, Ilya Fyk, Volodymyr Biletsky, Max Oliynyk, Yulia Kovalchuk, Volodymyr Hnieushev, Yevhen Shapchenko
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.