Рекурентна мережа як інструмент калібрування у автоматизованих системах та інтерактивних тренажерах

Автор(и)

  • Alexander Trunov Чорноморський національний університет ім. Петра Могили вул. 68 Десантників, 10, м. Миколаїв, Україна, 54003, Україна https://orcid.org/0000-0002-8524-7840
  • Alexander Malcheniuk Чорноморський національний університет ім. Петра Могили вул. 68 Десантників, 10, м. Миколаїв, Україна, 54003, Україна https://orcid.org/0000-0003-0716-3227

DOI:

https://doi.org/10.15587/1729-4061.2018.126498

Ключові слова:

метод авто-калібрування, корегування, структура рекурентної мережі, SoC-системи на кристалі, інтерактивні тренажери

Анотація

Побудовано метод автокалібрування та корегування значень вектору магнітної індукції, що є придатним до застосування в умовах обмежених обчислювальних ресурсів мікроконтроллерів та SoC-систем на кристалі автоматизованих систем та інтерактивних тренажерів. Досліджено працездатність алгоритмів калібрування і обробки периферійної інформації, що реалізують систему, та залежність величини похибки вимірювання від властивостей датчика та апаратних особливостей

Біографії авторів

Alexander Trunov, Чорноморський національний університет ім. Петра Могили вул. 68 Десантників, 10, м. Миколаїв, Україна, 54003

Доктор технічних наук, доцент, завідувач кафедри

Кафедра автоматизації та компьютерно-інтегрованих технологій

Alexander Malcheniuk, Чорноморський національний університет ім. Петра Могили вул. 68 Десантників, 10, м. Миколаїв, Україна, 54003

Аспірант

Кафедра автоматизації та комп’ютерно-інтегрованих технологій

Посилання

  1. Rudenko, O. H., Bodianskyi, Ye. V. (2006). Shtuchni neironni merezhi. Kharkiv: TOV «Kompaniya SMIT», 404.
  2. Haykin, S. (2006). Neyronnye seti: polniy kurs. Moscow: Izdatel'skiy dom «Vil'yams», 1104.
  3. Bavarian, B. (1988). Introduction to neural networks for intelligent control. IEEE Control Systems Magazine, 8 (2), 3–7. doi: 10.1109/37.1866
  4. Alberti, A. M. (2013). Internet of Things – Perspectives, Challenges and Opportunities – Presentation Slides. doi: 10.13140/rg.2.1.4501.4887
  5. Fazlur Rahman, M. H. R., Devanathan, R., Kuanyi, Z. (2000). Neural network approach for linearizing control of nonlinear process plants. IEEE Transactions on Industrial Electronics, 47 (2), 470–477. doi: 10.1109/41.836363
  6. Dai, X., He, D., Zhang, T., Zhang, K. (2003). ANN generalised inversion for the linearisation and decoupling control of nonlinear systems. IEE Proceedings – Control Theory and Applications, 150 (3), 267–277. doi: 10.1049/ip-cta:20030322
  7. Ciminski, A. S. (2005). Neural network based adaptable control method for linearization of high power amplifiers. AEU – International Journal of Electronics and Communications, 59 (4), 239–243. doi: 10.1016/j.aeue.2004.11.026
  8. Schoukens, J., Nemeth, J. G., Vandersteen, G., Pintelon, R., Crama, P. (2004). Linearization of Nonlinear Dynamic Systems. IEEE Transactions on Instrumentation and Measurement, 53 (4), 1245–1248. doi: 10.1109/tim.2004.831123
  9. Cotton, N. J., Wilamowski, B. M., Dundar, G. (2008). A Neural Network Implementation on an Inexpensive Eight Bit Microcontroller. 2008 International Conference on Intelligent Engineering Systems. doi: 10.1109/ines.2008.4481278
  10. Nauchno-tekhnicheskiy otchet o vypolnenii 2 etapa Gosudarstvennogo kontrakta No. P1047 ot 20 avgusta 2009 g. i Dopolneniyu ot 02 aprelya 2010 g. No. 1 (2010). Ekaterinburg, 84.
  11. Roj, J. (2013). Neural Network Based Real-time Correction of Transducer Dynamic Errors. Measurement Science Review, 13 (6), 286–291. doi: 10.2478/msr-2013-0042
  12. Schott, C., Racz, R., Huber, S. (2005). Smart CMOS Sensors with Integrated Magnetic Concentrators. IEEE Sensors. doi: 10.1109/icsens.2005.1597860
  13. Rivera, J., Carrillo, M., Chacón, M., Herrera, G., Bojorquez, G. (2007). Self-Calibration and Optimal Response in Intelligent Sensors Design Based on Artificial Neural Networks. Sensors, 7 (8), 1509–1529. doi: 10.3390/s7081509
  14. Trunov, A. N. (2013). Intellectualization of the models' transformation process to the recurrent sequence. European. Applied Sciences, 9 (1), 123–130
  15. Trunov, A. N. (2014). Application of the recurrent approximation method to synthesis of neuron net for determination the hydrodynamic characteristics of underwater vehicles. Problem of Information Technology, 02 (016), 39–47.
  16. Trunov, A. (2016). Vector indicator as a tool of recurrent artificial neuron net for processing data. EUREKA: Physics and Engineering, 4, 55–60. doi: 10.21303/2461-4262.2016.000129
  17. Trunov, A. (2015). An adequacy criterion in evaluating the effectiveness of a model design process. Eastern-European Journal of Enterprise Technologies, 1 (4 (73)), 36–41. doi: 10.15587/1729-4061.2015.37204
  18. Popovic, R. S., Drljaca, P. M., Schott, C. (2002). Bridging the gap between AMR, GMR, and Hall magnetic sensors. 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No.02TH8595). doi: 10.1109/miel.2002.1003148
  19. Popovic, R., Racz, R., Hreisa, J., Blanchard, H. (1999). Pat. No. US5942895A. Magnetic field sensor and current and/or energy sensor. Cl. G01R 33/06; G01R 19/00. No. 5,942,895; declareted: 23.10.1996; published: 24.08.1999.
  20. Drljaca, P. M., Schlageter, V., Vincent, F., Popovic, R. S. (2001). High Sensitivity Hall Magnetic Sensors Using Planar Micro and Macro Flux Concentrators. Transducers ’01 Eurosensors XV, 160–163. doi: 10.1007/978-3-642-59497-7_37
  21. Popovic, R. S., Randjelovic, Z., Manic, D. (2001). Integrated Hall-effect magnetic sensors. Sensors and Actuators A: Physical, 91 (1-2), 46–50. doi: 10.1016/s0924-4247(01)00478-2
  22. Drljača, P. M., Vincent, F., Besse, P.-A., Popović, R. S. (2002). Design of planar magnetic concentrators for high sensitivity Hall devices. Sensors and Actuators A: Physical, 97-98, 10–14. doi: 10.1016/s0924-4247(01)00866-4
  23. Schlageter, V., Drljaca, P. M., Popovic, R. S., Kucera, P. (2002). A Magnetic Tracking System based on Highly Sensitive Integrated Hall Sensors. Proc. MIPRO Conference. Opatija, Croatia.
  24. Trunov, A. (2016). Peculiarities of the interaction of electromagnetic waves with bio tissue and tool for early diagnosis, prevention and treatment. 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO). doi: 10.1109/elnano.2016.7493041
  25. Trunov, A. (2016). Realization of the paradigm of prescribed control of a nonlinear object as the problem on maximization of adequacy. Eastern-European Journal of Enterprise Technologies, 4 (4 (82)), 50–58. doi: 10.15587/1729-4061.2016.75674
  26. Trunov, A. (2016). Recurrent approximation as the tool for expansion of functions and modes of operation of neural network. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 41–48. doi: 10.15587/1729-4061.2016.81298
  27. Trunov, A. (2016). Criteria for the evaluation of model's error for a hybrid architecture DSS in the underwater technology ACS. Eastern-European Journal of Enterprise Technologies, 6 (9 (84)), 55–62. doi: 10.15587/1729-4061.2016.85585
  28. Trunov, A. (2017). Theoretical predicting the probability of electron detachment for radical of cell photo acceptor. 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO). doi: 10.1109/elnano.2017.7939776
  29. Trunov, A. (2017). Recurrent transformation of the dynamics model for autonomous underwater vehicle in the inertial coordinate system. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 39–47. doi: 10.15587/1729-4061.2017.95783
  30. Trunov, A. (2017). Recurrent Approximation in the Tasks of the Neural Network Synthesis for the Control of Process of Phototherapy. Chap. 10. Computer Systems for Healthcare and Medicin. Denmark, 213–248.
  31. Fisun, M., Smith, W., Trunov, A. (2017). The vector rotor as instrument of image segmentation for sensors of automated system of technological control. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: 10.1109/stc-csit.2017.8098828
  32. Kondratenko, Y., Kozlov, O., Korobko, O., Topalov, A. (2018). Complex Industrial Systems Automation Based on the Internet of Things Implementation. Communications in Computer and Information Science, 164–187. doi: 10.1007/978-3-319-76168-8_8
  33. Kondratenko, Y., Kozlov, O., Gerasin, O., Topalov, A., Korobko, O. (2017). Automation of control processes in specialized pyrolysis complexes based on web SCADA systems. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: 10.1109/idaacs.2017.8095059
  34. Topalov, A., Kozlov, O., Kondratenko, Y. (2016). Control processes of floating docks based on SCADA systems with wireless data transmission. 2016 XII International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH). doi: 10.1109/memstech.2016.7507520
  35. Kupin, A., Vdovychenko, I., Muzyka, I., Kuznetsov, D. (2017). Development of an intelligent system for the prognostication of energy produced by photovoltaic cells in smart grid systems. Eastern-European Journal of Enterprise Technologies, 5 (8 (89)), 4–9. doi: 10.15587/1729-4061.2017.112278
  36. Kupin, A. I. (2008). Intelektual'na identyfikatsiya ta keruvann v umovakh protsesiv zbahachuval'noyi tekhnolohiyi. Kyiv: Korniychuk, 202.
  37. ARDUINO PRO MINI. Available at: https://store.arduino.cc/arduino-pro-mini
  38. Solesvik, M., Kondratenko, Y., Kondratenko, G., Sidenko, I., Kharchenko, V., Boyarchuk, A. (2017). Fuzzy decision support systems in marine practice. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). doi: 10.1109/fuzz-ieee.2017.8015471

##submission.downloads##

Опубліковано

2018-03-21

Як цитувати

Trunov, A., & Malcheniuk, A. (2018). Рекурентна мережа як інструмент калібрування у автоматизованих системах та інтерактивних тренажерах. Eastern-European Journal of Enterprise Technologies, 2(9 (92), 54–60. https://doi.org/10.15587/1729-4061.2018.126498

Номер

Розділ

Інформаційно-керуючі системи