Розробка структури і методу ефективної бінарної стабілізації якісного параметра в динамічних системах

Автор(и)

  • Igor Lutsenko Кременчуцький національний університет ім. М. Остроградського вул. Першотравнева, 20, м. Кременчук, Україна, 39600, Україна https://orcid.org/0000-0002-1959-4684

DOI:

https://doi.org/10.15587/1729-4061.2018.131296

Ключові слова:

зворотний зв'язок, стабілізація параметрів, синтез динамічної системи, вибір параметрів стабілізації

Анотація

Питання стабілізації якісних параметрів динамічних процесів вважаються добре вивченими. Традиційно для цього використовується техніка введення негативних зворотних зв'язків. Супутнім моментом використання техніки негативного зворотного зв'язку є необхідність дослідження стійкості динамічної системи в діапазоні допустимих управлінь, вибору критерію стабілізації і параметрів стабілізації.

На прикладах динамічних систем з безперервною і порціонною подачею технологічних продуктів показано, що введення негативного зворотного зв'язку не є єдиною альтернативою, що дозволяє стабілізувати якісні параметри вихідних продуктів.

Показано, що проблеми стабілізації динамічних систем пов'язані з тим, що сигнали управління передають у складі керуючих сигналів нелінійності технологічної частини системи. У зв'язку з цим виникають проблеми стійкості і якості стабілізації.

Запропоновано метод стабілізації, вільний від впливу параметрів технологічної частини та системно обгрунтовану ознаку класифікації системних об'єктів. З'являється можливість класифікувати, за цією ознакою, об'єкти системи щодо їх належності до технологічної підсистеми або підсистеми управління.

Також метод передбачає використання системно обгрунтованого принципу визначення оптимальних параметрів управління процесом стабілізації якісного параметру вихідного системного продукту з використанням верифікованого критерію ефективності використання ресурсів.

Реалізація запропонованого методу дозволяє створювати автоматичні динамічні системи, побудовані по єдиному архітектурному принципу

Біографія автора

Igor Lutsenko, Кременчуцький національний університет ім. М. Остроградського вул. Першотравнева, 20, м. Кременчук, Україна, 39600

Доктор технічних наук, професор

Кафедра інформаційно-управляючих систем

Посилання

  1. Ang, K. H., Chong, G., Li, Y. (2005). PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13 (4), 559–576. doi: 10.1109/tcst.2005.847331
  2. Ziegler, J. G., Nichols, N. B. (1942). Optimum settings for automatic controllers. Trans. ASME, 64, 759–768.
  3. Chien, K. L., Hrons, J. A., Reswick, J. B. (1972). On the Automatic Control of Generalized Passive Systems. Transactions of the American Society of Mechanical Engineeing, 74, 175–185.
  4. O’Dwyer, A. (2003). PID compensation of time delayed processes 1998–2002: a survey. Proceedings of the 2003 American Control Conference, 2003. doi: 10.1109/acc.2003.1239802
  5. Åström, K. J., Hägglund, T. (2000). The Future of PID Control. IFAC Proceedings Volumes, 33 (4), 19–30. doi: 10.1016/s1474-6670(17)38216-2
  6. Viner, N. (1983). Kibernetika ili upravlenie i svyaz' v zhivotnom i mashine. Moscow: Nauka, 344.
  7. Anderson, B. D., Bitmead, R. R., Johnson, C. R. et. al. (1987). Stability of adaptive systems: passivity and averaging analysis. MIT Press, 300.
  8. Petrovas, A., Rinkevičienė, R. (2012). Automatic Control Theory I, II: A Laboratory Manual. Technika, 98. doi: 10.3846/1335-s
  9. Goncharov, Yu. G., Davidkovich, A. S. et. al. (1968). Avtomaticheskiy kontrol' i regulirovanie tekhnologicheskih processov na zhelezorudnyh fabrikah. Moscow: Nedra, 227.
  10. Hammond, P. H. (1958). Feedback theory and its applications. London: English Universities Press, 348.
  11. Krasovskiy, A. A. (Ed.) (1987). Spravochnik po teorii avtomaticheskogo upravleniya. Moscow: Nauka, 712.
  12. Horowitz, M. (1963). Synthesis of feedback systems. Academic Press, 740. doi: 10.1016/c2013-0-12529-9
  13. Shen, J. C., Chiang, H. K. (2004). PID tuning rules for second order systems. 5th Asian Control Conference, 472–477.
  14. Silva, G. J., Datta, A., Bhattacharyya, S. P. (2002). New results on the synthesis of PID controllers. IEEE Transactions on Automatic Control, 47 (2), 241–252. doi: 10.1109/9.983352
  15. Skoczowski, S., Domek, S., Pietrusewicz, K., Broel-Plater, B. (2005). A Method for Improving the Robustness of PID Control. IEEE Transactions on Industrial Electronics, 52 (6), 1669–1676. doi: 10.1109/tie.2005.858705
  16. Karimi, A., Garcia, D., Longchamp, R. (2003). PID controller tuning using Bode's integrals. IEEE Transactions on Control Systems Technology, 11 (6), 812–821. doi: 10.1109/tcst.2003.815541
  17. Hemerly, E. E. (1991). PC-based packages for identification, optimization, and adaptive control. IEEE Control Systems, 11 (2), 37–43. doi: 10.1109/37.67674
  18. Ren, X. M., Rad, A. B., Lo, W. L., Chan, P. T. (2005). Adaptive H/sub 2/ optimal control based on Smith predictor for continuous time systems with unknown time delay. International Conference on Control and Automation. doi: 10.1109/icca.2005.1528109
  19. Country, M. (2017). Advancing the pH hypothesis of negative feedback to photoreceptors: sources of protons and a role for bicarbonate in feedback. The Journal of Physiology, 595 (4), 1023–1024. doi: 10.1113/jp273518
  20. Lanzon, A., Chen, H.-J. (2017). Feedback Stability of Negative Imaginary Systems. IEEE Transactions on Automatic Control, 62 (11), 5620–5633. doi: 10.1109/tac.2017.2688579
  21. Aminifar, A., Eles, P., Peng, Z., Cervin, A., Arzen, K.-E. (2017). Control-Quality Driven Design of Embedded Control Systems with Stability Guarantees. IEEE Design & Test, 1–1. doi: 10.1109/mdat.2017.2766564
  22. Gu, K., Naghnaeian, M. (2011). Stability Crossing Set for Systems With Three Delays. IEEE Transactions on Automatic Control, 56 (1), 11–26. doi: 10.1109/tac.2010.2050162
  23. Novara, C., Formentin, S. (2018). Data-Driven Inversion-Based Control of Nonlinear Systems With Guaranteed Closed-Loop Stability. IEEE Transactions on Automatic Control, 63 (4), 1147–1154. doi: 10.1109/tac.2017.2744499
  24. Dedesh, V. T. (2010). Stability and self-oscillations of nonlinear single-circuit automatic control systems. TsAGI Science Journal, 41 (3), 341–356. doi: 10.1615/tsagiscij.v41.i3.70
  25. Lazar, M., Heemels, W. P. M. H., Teel, A. R. (2013). Further Input-to-State Stability Subtleties for Discrete-Time Systems. IEEE Transactions on Automatic Control, 58 (6), 1609–1613. doi: 10.1109/tac.2012.2231611
  26. Bokharaie, V. S., Mason, O., Verwoerd, M. (2010). D-Stability and Delay-Independent Stability of Homogeneous Cooperative Systems. IEEE Transactions on Automatic Control, 55 (12), 2882–2885. doi: 10.1109/tac.2010.2076334
  27. Costa, E. F., do Val, J. B. R. (2009). Uniform Approximation of Infinite Horizon Control Problems for Nonlinear Systems and Stability of the Approximating Controls. IEEE Transactions on Automatic Control, 54 (4), 881–886. doi: 10.1109/tac.2008.2010970
  28. Bulatovic, R. M. (2017). A stability criterion for circulatory systems. Acta Mechanica, 228 (7), 2713–2718. doi: 10.1007/s00707-017-1841-4
  29. Zhao, X., Deng, F. (2016). A New Type of Stability Theorem for Stochastic Systems With Application to Stochastic Stabilization. IEEE Transactions on Automatic Control, 61 (1), 240–245. doi: 10.1109/tac.2015.2438414
  30. Knorn, S., Middleton, R. H. (2013). Stability of Two-Dimensional Linear Systems With Singularities on the Stability Boundary Using LMIs. IEEE Transactions on Automatic Control, 58 (10), 2579–2590. doi: 10.1109/tac.2013.2264852
  31. Amanullah, M., Tiwari, P. (2014). Optimization of PID Parameter In Control System Tuning With Multi-Objective Genetic Algorithm. Journal of Engineering Research and Applications, 4 (5), 60–66.
  32. Mahdi, S. A. (2014). Optimization of PID Controller Parameters based on Genetic Algorithm for non-linear Electromechanical Actuator. International Journal of Computer Applications, 94 (3), 11–20. doi: 10.5120/16322-5573
  33. Jaen-Cuellar, A. Y., de J. Romero-Troncoso, R., Morales-Velazquez, L., Osornio-Rios, R. A. (2013). PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems. International Journal of Advanced Robotic Systems, 10 (9), 324. doi: 10.5772/56697
  34. Dwi Argo, B., Hendrawan, Y., Firmanda Al Riza, D., Jaya Laksono, A. N. (2015). Optimization of PID Controller Parameters on Flow Rate Control System Using Multiple Effect Evaporator Particle Swarm Optimization. International Journal on Advanced Science, Engineering and Information Technology, 5 (2), 62. doi: 10.18517/ijaseit.5.2.491
  35. Lutsenko, I., Tytiuk, V., Oksanych, I., Rozhnenko, Z. (2017). Development of the method for determining optimal parameters of the process of displacement of technological objects. Eastern-European Journal of Enterprise Technologies, 6 (3 (90)), 41–48. doi: 10.15587/1729-4061.2017.116788
  36. Lutsenko, I., Fomovskaya, E., Serduik, O. (2016). Development of executive system architecture of the converting class. Eastern-European Journal of Enterprise Technologies, 4 (2 (82)), 50–58. doi: 10.15587/1729-4061.2016.74873
  37. Lutsenko, I., Fomovskaya, E. (2015). Identification of target system operations. The practice of determining the optimal control. Eastern-European Journal of Enterprise Technologies, 6 (2 (78)), 30–36. doi: 10.15587/1729-4061.2015.54432
  38. Lutsenko, I., Fomovskaya, E., Koval, S., Serdiuk, O. (2017). Development of the method of quasi-optimal robust control for periodic operational processes. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 52–60. doi: 10.15587/1729-4061.2017.107542
  39. Lutsenko, I., Vihrova, E., Fomovskaya, E., Serduik, O. (2016). Development of the method for testing of efficiency criterion of models of simple target operations. Eastern-European Journal of Enterprise Technologies, 2 (4 (80)), 42–50. doi: 10.15587/1729-4061.2016.66307
  40. Lutsenko, I., Fomovskaya, E., Oksanych, I., Vikhrova, E., Serdiuk, О. (2017). Formal signs determination of efficiency assessment indicators for the operation with the distributed parameters. Eastern-European Journal of Enterprise Technologies, 1 (4 (85)), 24–30. doi: 10.15587/1729-4061.2017.91025
  41. Lutsenko, I., Fomovskaya, E., Oksanych, I., Koval, S., Serdiuk, О. (2017). Development of a verification method of estimated indicators for their use as an optimization criterion. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 17–23. doi: 10.15587/1729-4061.2017.95914
  42. Lutsenko, I., Fomovskaya, E., Vihrova, E., Serdiuk, O., Fomovsky, F. (2018). Development of test operations in different duration to increase verification quality of efficiency formula. Eastern-European Journal of Enterprise Technologies, 1 (4 (91)), 42–49. doi: 10.15587/1729-4061.2018.121810
  43. Lutsenko, I., Oksanych, I., Shevchenko, I., Karabut, N. (2018). Development of the method of modeling operational processes for tasks relating to decision-making. Eastern-European Journal of Enterprise Technologies, 2 (4 (92)), 26–32. doi: 10.15587/1729-4061.2018.126446

##submission.downloads##

Опубліковано

2018-05-16

Як цитувати

Lutsenko, I. (2018). Розробка структури і методу ефективної бінарної стабілізації якісного параметра в динамічних системах. Eastern-European Journal of Enterprise Technologies, 3(4 (93), 44–52. https://doi.org/10.15587/1729-4061.2018.131296

Номер

Розділ

Математика та кібернетика - прикладні аспекти