Розробка технології структуризації групових експертних оцінок в умовах різних видів невизначеності
DOI:
https://doi.org/10.15587/1729-4061.2018.133299Ключові слова:
експертні оцінки, агрегування експертних оцінок, метод парних порівнянь, правила комбінуванняАнотація
Розглянуто задачу структуризації групових експертних оцінок, сформованих в умовах невизначеності різної природи і наявності конфліктуючих експертних свідоцтв. Запропоновано методику агрегування групових експертних оцінок, що формуються в умовах різних видів невизначеності, яка дозволяє синтезувати групове рішення з урахуванням різних форм представлення експертних переваг (інтервальні, нечіткі, точкові експертні оцінки). Запропонована процедура дозволяє синтезувати групове рішення у разі, якщо в групі експертів є група або декілька груп експертів, які висловлюють свої переваги з використанням різних форм подання експертної інформації.
Такий підхід дозволяє максимально точно відображати експертні переваги щодо аналізованого об'єкта, не обмежуючи експертів жорсткою формою подання оцінок.
Для аналізу отриманої експертної інформації, та отримання індивідуальних експертних ранжировок аналізованих об'єктів, в роботі використаний метод парних порівнянь і його модифікації.
Встановлено, що для агрегування точкових експертних оцінок, більш точні результати комбінування можуть бути отримані на основі застосування правил перерозподілу конфліктів теорії правдоподібних і парадоксальних міркувань. Для агрегування інтервальних експертних оцінок рекомендується застосовувати одне з правил комбінування теорії свідоцтв. Встановлено, що для підвищення якості результатів комбінування доцільно визначати порядок комбінування експертних свідоцтв, наприклад, враховуючи міру відмінності і структуру експертних свідоцтв.
Одержані результати покликані сприяти підвищенню якості та ефективності процесів підготовки і прийняття рішень щодо аналізу та структуризації групових експертних оцінокПосилання
- Nedashkovskaya, N. I., Pankratova, N. D. (2007). Metodologiya obrabotki nechetkoy ekspertnoy informacii v zadachah predvideniya. Ch. 1. Problemy upravleniya i informatiki, 2, 40–55.
- Prabjot, K., Mahanti, N. C. (2008). A fuzzy ANP-based approach for selection ERP vendors. International Journal of Soft Computing, 3 (1), 24–32.
- Chen, T.-Y., Ku, T.-C. (2008). Importance-assessing method with fuzzy number-valued fuzzy measures and discussions on TFNs and TrFNs. International Journal of Fuzzy Systems, 10 (2), 92–103.
- Dubrovin, V. I., Mironova, N. A. (2009). Metod polucheniya vektora prioritetov iz nechetkih matric poparnyh sravneniy. Iskusstvenniy intellekt, 3, 464–470.
- Makui, A., Fathi, M., Narenji, M. (2010). Interval Weighted Comparison Matrices – A Review. International Journal of Industrial Engineering & Production Research, 20 (4), 139–156.
- Sayko, V. V. (2009). Modifikaciya metoda parnyh sravneniy dlya sluchaev s bol'shim kolichestvom ocenivaemyh parametrov. Intellektual'nye sistemy prinyatiya resheniy i problemy vychislitel'nogo intellekta (ISDMCI’ 2009): Materialy mezhdunar. nauch. konf. Vol. 1. Evpatoriya, 210–214.
- Pavlov, O. A., Lishchuk, K. I., Shtankevych, O. S., Ivanova, H. A., Fedotov, O. P. (2010). Modyfikovanyi metod analizu ierarkhiy (versiya 1,2). Visnyk NTUU «KPI». Seriya: Informatyka, upravlinnia ta obchysliuvalna tekhnika, 50, 43–54.
- Beynon, M. J. (2014). Reflections on DS/AHP: Lessons to Be Learnt. Lecture Notes in Computer Science, 95–104. doi: 10.1007/978-3-319-11191-9_11
- Stopchenko, H. I., Makrushan, I. A., Bilan, S. V. (2010). Zadachi ta kontseptsiyi metodiv bahatokryterialnykh rishen v intelektualnykh systemakh. Bionika intelektu, 1 (72), 122–125.
- Krejci, J. (2018). Pairwise comparison matrices and their fuzzy extension: multi-criteria decision making with a new fuzzy approach. Vol. 366. Fuzziness and Soft Computing. Springer International Publishing, 288. doi: 10.1007/978-3-319-77715-3
- Bulut, E., Duru, O., Keçeci, T., Yoshida, S. (2012). Use of consistency index, expert prioritization and direct numerical inputs for generic fuzzy-AHP modeling: A process model for shipping asset management. Expert Systems with Applications, 39 (2), 1911–1923. doi: 10.1016/j.eswa.2011.08.056
- Dopazo, E., Lui, K., Chouinard, S., Guisse, J. (2014). A parametric model for determining consensus priority vectors from fuzzy comparison matrices. Fuzzy Sets and Systems, 246, 49–61. doi: 10.1016/j.fss.2013.07.022
- Demirel, T., Demirel, N. Ç., Kahraman, C. (2008). Fuzzy Analytic Hierarchy Process and its Application. Fuzzy Multi-Criteria Decision Making, 53–83. doi: 10.1007/978-0-387-76813-7_3
- Nedashkovskaya, N. I. (2015). Modeli parnyh sravneniy na osnovanii interval'nyh ocenok ekspertov. Pytannia prykladnoi matematyky i matematychnoho modeliuvannia. 2015. Available at: http://pm-mm.dp.ua/index.php/pmmm/article/view/112/112
- Wang, Y.-M., Elhag, T. M. S. (2007). A goal programming method for obtaining interval weights from an interval comparison matrix. European Journal of Operational Research, 177 (1), 458–471. doi: 10.1016/j.ejor.2005.10.066
- Smarandache, F., Dezert, J., Tacnet, J. (2010). Fusion of sources of evidence with different importances and reliabilities. 2010 13th International Conference on Information Fusion. doi: 10.1109/icif.2010.5712071
- Uzhga-Rebrov, O. I. (2010). Upravlenie neopredelennostyami. Ch. 3. Sovremennye neveroyatnostnye metody. Rezekne: Izdevnieciba, 560.
- Fu, C., Yang, S. (2012). An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements. European Journal of Operational Research, 223 (1), 167–176. doi: 10.1016/j.ejor.2012.05.048
- Yan, Y., Suo, B. (2013). A Novel D-S Combination Method for Interval-valued Evidences. Research Journal of Applied Sciences, Engineering and Technology, 6 (13), 2326–2331. doi: 10.19026/rjaset.6.3703
- Jousselme, A.-L., Maupin, P. (2012). Distances in evidence theory: Comprehensive survey and generalizations. International Journal of Approximate Reasoning, 53 (2), 118–145. doi: 10.1016/j.ijar.2011.07.006
- Shved, A., Davydenko, Y. (2016). The analysis of uncertainty measures with various types of evidence. 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP). doi: 10.1109/dsmp.2016.7583508
- Antonucci, A. (2012). An Interval-Valued Dissimilarity Measure for Belief Functions Based on Credal Semantics. Belief Functions: Theory and Applications, 37–44. doi: 10.1007/978-3-642-29461-7_4
- Kovalenko, I. I., Shved, A. V. (2016). Clustering of group expert estimates based on measures in the theory of evidence. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 71–77.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2018 Igor Kovalenko, Alyona Shved
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.