Концепція модульної кіберфізичної системи для ранньої діагностики енергетичного обладнання
DOI:
https://doi.org/10.15587/1729-4061.2018.139644Ключові слова:
Smart Box, Industry 4.0, рання діагностика, кіберфізична система, асинхронний двигунАнотація
Запропоновано концепцію модульної кіберфізичної системи для ранньої діагностики промислового та приватного енергетичного обладнання на основі використання підходів та стандартів Industry 4.0, зокрема концепції Internet of Things. Головною задачею запропонованої концепції та підходів є виконання непрямої діагностики та ідентифікації будь-якого енергетичного обладнання, головним елементом якого є асинхронний двигун, зокрема визначення несправностей та підвищеного енергоспоживання. З метою реалізації поставлених задач запропоновано використання модульної структури Smart Box діагностуючих пристроїв. Зокрема, представлено модель модульної кіберфізичної системи із застосуванням Smart Box прийстрою для ранньої технічної діагностики електрообладнання та його інформаційні потоки. Це дозволяє розподілювати усі технологічні об’єкти підприємства на окремі структурні одиниці, які можуть бути частиною інформаційного кластеру. Це дозволяє зменшити час реакції в кластерній системі на 30–35 %, у порівнянні зі звичайною. Також, використання даного типу системи дозволяє зменшити кількість спеціалізованого обладнання у межах використання однотипного енергетичного обладнання.
У якості обчислювального ядра Smart Box пристрою запропоновано використовувати структуру нейро-нечіткої мережі, яка складається з 5 шарів. Особливістю даної системи є можливість зміни кількості термів вхідних змінних з метою підвищення якості ідентифікації асинхронних двигунів. У якості інформативних ознак було обрано характерні частоти, які ідентифікують електродвигун у електромережі. Зокрема, у системах з малими генеруючими потужностями, з метою збільшення діагностованих асинхронних двигунів в межах кластеру, доцільно зменшити вхідну множину, наприклад, до 3–4 ХЧ.
Отримані результати дослідження у вигляді моделі модульної кіберфізичної системи можливо використовувати при побудові апаратно-програмних модулів для діагностики технологічного та побутового електрообладнання. У свою чергу, дані модулі можуть обє’єднуватися у загальну глобальну мережу IoT
Посилання
- Kupin, A. I., Kuznietsov, D. I. (2016). Informatsiyna tekhnolohiya dlia hrupovoi diahnostyky asynkhronnykh elektrodvyhuniv na osnovi spektralnykh kharakterystyk ta intelektualnoi klasyfikatsiyi. Kryvyi Rih: Vydavets FOP Cherniavskyi D.O., 200.
- Morkun, V.,Tron, V.,Goncharov, S. (2015). Automation of the ore varieties recognition process in the technological process streams based on the dynamic effects of high-energy ultrasound. Metallurgical and Mining Industry, 2, 31–34.
- Morkun, V., Morkun, N.,Pikilnyak, A. (2014). Iron ore flotation process control and optimization using high-energy ultrasound. Metallurgical and Mining Industry, 2, 36–42.
- Golik, V., Komashchenko, V., Morkun, V. (2015). Feasibility of using the mill tailings for preparation of self-hardening mixtures. Metallurgical and Mining Industry, 3, 38–41.
- Golik, V., Komashchenko, V., Morkun, V. (2015). Innovative technologies of metal extraction from the ore processing mill tailings and their integrated use. Metallurgical and Mining Industry, 3, 49–52.
- RuEmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., Harnisch M. (2015). Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries. The Boston Cnsulting Group, 20. Available at: https://www.zvw.de/media.media.72e472fb-1698-4a15-8858-344351c8902f.original.pdf
- Lutsenko, I., Fomovskaya, E. (2015). Synthesis of cybernetic structure of optimal spooler. Metallurgical and Mining Industry, 9, 297–301.
- Vermesan, O., Friess, P., Guillemin, P., Sundmaeker, H., Eisenhauer, M., Moessner, K. et. al. (2014). Internet of things strategic research and innovation agenda. National University of Ireland, Galway. Available at: https://www.insight-centre.org/content/internet-things-strategic-research-and-innovation-agenda-ierc-cluster-sria-2014
- Mohammed, Z., Ahmed, E. (2017). Internet of Things Applications, Challenges and Related Future Technologies. World Scientific News, 67 (2), 126–148.
- Morkun, V., Tron, V. (2014). Ore preparation energy-efficient automated control multi-criteria formation with considering of ecological and economic factors. Metallurgical and Mining Industry, 5, 8–10.
- Morkun, V., Morkun, N., Pikilnyak, A. (2015). The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp. Ultrasonics, 56, 340–343. doi: https://doi.org/10.1016/j.ultras.2014.08.022
- Chamberlin, B. (2016). Healthcare Internet of Things: 18 trends to watch in 2016. IBM Center for Applied Insights. Available at: https://ibmcai.com/2016/03/01/healthcare-internet-of-things-18-trends-to-watch-in-2016/
- Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29 (7), 1645–1660. doi: https://doi.org/10.1016/j.future.2013.01.010
- Morkun, V., Morkun, N., Pikilnyak, A. (2014). Ultrasonic facilities for the ground materials characteristics control. Metallurgical and Mining Industry, 2, 31–35.
- IoT connections outlook (2017). Ericsson mobility report. Available at: https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-november-2017-central-and-eastern-europe.pdf
- SMART THINQ. Available at: https://www.lg.com/uk/support/solutions/washingmachines/smart-thinq
- Kulagin, M., Volkov, I. (2016). Promyshlennyy internet na praktike: udalennaya diagnostika stankov s ChPU s pomoshch'yu tekhnologii Winnum. CAD/cam/cae Observer, 6 (106), 20–25.
- Zolfaghari, S., Noor, S., Rezazadeh Mehrjou, M., Marhaban, M., Mariun, N. (2017). Broken Rotor Bar Fault Detection and Classification Using Wavelet Packet Signature Analysis Based on Fourier Transform and Multi-Layer Perceptron Neural Network. Applied Sciences, 8 (1), 25. doi: https://doi.org/10.3390/app8010025
- From Machine-to-Machine to the Internet of Things. Introduction to a New Age of Intelligence (2014). Elsevier. doi: https://doi.org/10.1016/c2012-0-03263-2
- Industry 4.0. Challenges and solutions for the digital transformation and use of exponential technologies (2014). Deloitte. Available at: https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-en-manufacturing-industry-4-0-24102014.pdf
- Kupin, A. I., Kuznietsov, D. I. (2012). Pat. No. 81128 UA. Sposib diahnostuvannia elektrodvyhuna. MPK: H02K 57/00. No. u201214058; declareted: 10.12.2012; published: 25.06.2013, Bul. No. 12.
- Serhat Berat, E. F. E. (2013). Power Flow Analysis by Artificial Neural Network. International Journal of Energy and Power Engineering, 2 (6), 204. doi: https://doi.org/10.11648/j.ijepe.20130206.11
- Trunov, A. (2016). Criteria for the evaluation of model's error for a hybrid architecture DSS in the underwater technology ACS. Eastern-European Journal of Enterprise Technologies, 6 (9 (84)), 55–62. doi: https://doi.org/10.15587/1729-4061.2016.85585
- Kupin, A., Vdovychenko, I., Muzyka, I., Kuznetsov, D. (2017). Development of an intelligent system for the prognostication of energy produced by photovoltaic cells in smart grid systems. Eastern-European Journal of Enterprise Technologies, 5 (8 (89)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.112278
- Krizhevsky, A., Sutskever, I., Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems, 1097–1105.
- McHenry, M., Robertson, D., Matheson, R. (2015). Electronic noise is drowning out the Internet of things. IEEE Spectrum: Technology, Engineering, and Science News. Available at: https://spectrum.ieee.org/telecom/wireless/electronic-noise-is-drowning-out-the-internet-of-things
- Zaslavsky, A. M., Tkachov, V. V., Protsenko, S. M., Bublikov, A. V., Suleimenov, B., Orshubekov, N., Gromaszek, K. (2017). Self-organizing intelligent network of smart electrical heating devices as an alternative to traditional ways of heating. Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017. doi: https://doi.org/10.1117/12.2281225
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2018 Andreу Kupin, Dennis Kuznetsov, Ivan Muzyka, Dmitriy Paraniuk, Oleksandra Serdiuk, Oleksandr Suvorov, Vladimir Dvornikov
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.