Трансформація операцій з нечіткими множинами для розв’язку задач оптимального руху безекіпажних безпілотних апаратів

Автор(и)

  • Alexander Trunov Чорноморський національний університет ім. Петра Могили вул. 68 Десантників, 10, м. Миколаїв, Україна, 54003, Україна https://orcid.org/0000-0002-8524-7840

DOI:

https://doi.org/10.15587/1729-4061.2018.140641

Ключові слова:

оптимальна трєкторія, розділення рухів, керуючі впливи, нечіткі множини, трансформація операцій

Анотація

Поставлено та проаналізовано розв’язок оптимізаційної задачі про мінімум часу руху безпілотного безекіпажного апарату (ББА). Встановлено зв’язок між проекціями вектору швидкості, як умовою розв’язку задачі про мінімум часу переміщення, запропоновано будувати алгоритм корегування параметрів оптимальної траєкторії. Продемонстровано, якщо на траєкторії обрано як масштаб величину “с” між поперечними похідними від модуля вектора швидкості за двома ортогональними напрямами, а також забезпечено дію сил, які з тим же масштабом “с” зв’язують другі похідні від координат за цими напрямами, то така траєкторія мінімізує загальний час руху. Розділення рухів утворює можливості керування на підставі відеозображень за умов дотримання обмежень на величину масштабу “с” та накладає обмеження на роботу двигунів ‑ приводів рушіїв. Встановлено, що калібрування рушіїв дозволяє визначити константу “с”.

Сформовано керуючі впливи: сили та моменти для гідродинамічної моделі ББА. Запропоновано представлення керуючих впливів через число обертів валу рушія – пропелера. Представлено керуючі впливи через функцію належності та мінімальне і максимальне паспортне число обертів валу пропелеру рушія.

Введено нові якісні поняття, що задано функцією належності: швидкості обертання валу рушія до таких значень, які могуть бути реалізовані двигуном µi(ns/nmax); сили упору, яка забезпечує прискорений рух ББА за паспортом µsx(x*,t); підймної сила, яка забезпечуватиме надлишок підйомної сили µsy(x*); швидкості обертання валу рушія, яка забезпечить механічну потужність при економічному споживанні електричної енергії.

Промодельовано процес вибору швидкості обертання валу рушіїв під час просторового руху безпілотного, безекіпажного апарату з урахуванням впливу таких якісних факторів. Продемонстровано спрощення процесу вибору відносної швидкості обертання валу рушія під час керування ББА. Показано на числових прикладах незалежність і стійкість величини розрозрахованної функції належності перетину та обраної відносної частоти обертання валів рушіїв від вибору кутів орієнтації вісей рушіїв

Біографія автора

Alexander Trunov, Чорноморський національний університет ім. Петра Могили вул. 68 Десантників, 10, м. Миколаїв, Україна, 54003

Доктор технічних наук, доцент, завідувач кафедри

Кафедра автоматизації та компьютерно-інтегрованих технологій

Посилання

  1. Future trends, newest drone tech revealed at CES 2016. Available at: https://www.directionsmag.com/article/1178
  2. Drones in 2018: Thought Leaders Make Predictions. Available at: https://dronelife.com/2018/01/02/drones-2018-thought-leaders-predict-new-trends/
  3. Austin, R. (2010). Unmanned Aircraft Systems: UAVS Design, Development and Deployment. Wiley, 372.
  4. Aleksandrow, M. N., Trunow, A. N. (1989). Metody i srodky adaptacyjnego sterowania w technice glebokovodnej. Materialy V Konferencji: Projektowanie I Budowa Obiectow Oceanotechniki. Szczecin, 53–54
  5. Blincov, V. S. (1998). Privyaznye podvodnye sistemy. Kyiv: Naukova dumka, 231.
  6. Yastrebov, V. S., Garbuz, E. I., Filatov, A. M., Blincov, V. S., Ivanishin, B. P., Trunov, A. N., Pavlov, A. P. (1990). Razrabotka i ispytanie adaptivnogo podvodnogo robota. Sbornik nauchnyh trudov instituta Okeanologii im. P. P. Shirshova AN SSSR, 98–112.
  7. Trunov, A. (2016). Criteria for the evaluation of model's error for a hybrid architecture DSS in the underwater technology ACS. Eastern-European Journal of Enterprise Technologies, 6 (9 (84)), 55–62. doi: https://doi.org/10.15587/1729-4061.2016.85585
  8. Trunov, A. (2017). Recurrent transformation of the dynamics model for autonomous underwater vehicle in the inertial coordinate system. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 39–47. doi: https://doi.org/10.15587/1729-4061.2017.95783
  9. Fradkov, A. L. (2005). O primenenii kiberneticheskih metodov v fizike. UFN, 175 (2), 113–138.
  10. Hodakov, V. E., Sokolova, N. A., Kiriychuk, D. L. (2014). O razviti osnov teorii koordinacii slozhnyh system. Problemy informatsiinykh tekhnolohiy, 2, 12–21.
  11. Petrov, E. G., Kosenko, N. V. (2014). Koordinacionnoe upravlenie (menedzhment) processami realizacii resheniy. Systemy obrobky informatsiyi, 8, 160–163.
  12. Trunov, A. (2016). Realization of the paradigm of prescribed control of a nonlinear object as the problem on maximization of adequacy. Eastern-European Journal of Enterprise Technologies, 4 (4 (82)), 50–58. doi: https://doi.org/10.15587/1729-4061.2016.75674
  13. Bellman, R. E., Kalaba, R. E. (1965). Quasilinearization and nonlinear boundary – value problems. American Elsiver Publishing Company, 206.
  14. Lukomskiy, Yu. A., Chugunov, V. S. (1988). Sistemy upravleniya morskimi podvizhnymi ob'ektami. Leningrad: Sudostroenie, 272.
  15. Ikonnikov, I. B. (1986). Samohodnye neobitaemye podvodnye apparaty. Leningrad: Sudostroenie, 264.
  16. Korol', Yu. M. (2002). Uravnenie dvizheniya teleupravlyaemyh podvodnyh apparatov. Zbirnyk naukovykh prats UDMTU, 2, 16–25.
  17. Slizhevskiy, N. B. (1998). Hodkost' i upravlyaemost' podvodnyh tekhnicheskih sredstv. Nikolaev, 148.
  18. Zhuravska, I., Kulakovska, I., Musiyenko, M. (2018). Development of a method for determining the area of operation of unmanned vehicles formation by using the graph theory. Eastern-European Journal of Enterprise Technologies, 2 (3 (92)), 4–12. doi: https://doi.org/10.15587/1729-4061.2018.128745
  19. Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N. (2009). Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. Unmanned Systems Technology XI. doi: https://doi.org/10.1117/12.819082
  20. Chudoba, J., Saska, M., Baca, T., Preucil, L. (2014). Localization and stabilization of micro aerial vehicles based on visual features tracking. 2014 International Conference on Unmanned Aircraft Systems (ICUAS). doi: https://doi.org/10.1109/icuas.2014.6842304
  21. Engel, J., Sturm, J., Cremers, D. (2012). Camera-based navigation of a low-cost quadrocopter. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: https://doi.org/10.1109/iros.2012.6385458
  22. Klein, G., Murray, D. (2007). Parallel Tracking and Mapping for Small AR Workspaces. 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. doi: https://doi.org/10.1109/ismar.2007.4538852
  23. Krajník, T., Vonásek, V., Fišer, D., Faigl, J. (2011). AR-Drone as a Platform for Robotic Research and Education. Research and Education in Robotics – EUROBOT 2011, 172–186. doi: https://doi.org/10.1007/978-3-642-21975-7_16
  24. Krajnik, T., Nitsche, M., Faigl, J., Duckett, T., Mejail, M., Preucil, L. (2013). External localization system for mobile robotics. 2013 16th International Conference on Advanced Robotics (ICAR). doi: https://doi.org/10.1109/icar.2013.6766520
  25. Krejsa, J., Vechet, S. (2012). Infrared Beacons based Localization of Mobile Robot. Electronics and Electrical Engineering, 117 (1). doi: https://doi.org/10.5755/j01.eee.117.1.1046
  26. Nickels, K., Hutchinson, S. (2002). Estimating uncertainty in SSD-based feature tracking. Image and Vision Computing, 20 (1), 47–58. doi: https://doi.org/10.1016/s0262-8856(01)00076-2
  27. Stewénius, H., Engels, C., Nistér, D. (2006). Recent developments on direct relative orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 60 (4), 284–294. doi: https://doi.org/10.1016/j.isprsjprs.2006.03.005
  28. Trajković, M., Hedley, M. (1998). Fast corner detection. Image and Vision Computing, 16 (2), 75–87. doi: https://doi.org/10.1016/s0262-8856(97)00056-5
  29. Welch, G., Bishop, G. (1995). An introduction to the kalman filter. In Annual Conference on Computer Graphics and Interactive Techniques.
  30. Musiyenko, M. P., Denysov, O. O., Zhuravska, I. M., Burlachenko, I. S. (2016). Development of double median filter for optical navigation problems. 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2016.7583535
  31. Burlachenko, I., Zhuravska, I., Musiyenko, M. (2017). Devising a method for the active coordination of video cameras in optical navigation based on the multi-agent approach. Eastern-European Journal of Enterprise Technologies, 1 (9 (85)), 17–25. doi: https://doi.org/10.15587/1729-4061.2017.90863
  32. Fisun, M., Smith, W., Trunov, A. (2017). The vector rotor as instrument of image segmentation for sensors of automated system of technological control. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098828
  33. Trunov, A., Fisun, M., Malcheniuk, A. (2018). The processing of hyperspectral images as matrix algebra operations. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset.2018.8336305
  34. Zhuravska, I. M. (2016). Ensuring a stable wireless communication in cyber-physical systems with moving objects. Technology Audit and Production Reserves, 5 (2 31)), 58–64. doi: https://doi.org/10.15587/2312-8372.2016.80784
  35. Krainyk, Y., Perov, V., Musiyenko, M., Davydenko, Y. (2017). Hardware-oriented turbo-product codes decoder architecture. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2017.8095067
  36. Solesvik, M., Kondratenko, Y., Kondratenko, G., Sidenko, I., Kharchenko, V., Boyarchuk, A. (2017). Fuzzy decision support systems in marine practice. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). doi: https://doi.org/10.1109/fuzz-ieee.2017.8015471
  37. Gomolka, Z., Dudek-Dyduch, E., Kondratenko, Y. P. (2017). From Homogeneous Network to Neural Nets with Fractional Derivative Mechanism. Lecture Notes in Computer Science, 52–63. doi: https://doi.org/10.1007/978-3-319-59063-9_5
  38. Kondratenko, Y. P., Kozlov, O. V., Topalov, A. M., Gerasin, O. S. (2017). Computerized system for remote level control with discrete self-testing. ICTERI-2017, CEUR Workshop Proceedings Open Access, 1844, 608–619. Available at: http://ceur-ws.org/Vol-1844/10000608.pdf
  39. Kondratenko, Y. P., Joachim, R., Kozlov, O. V., Zaporozhets, Y. M., Gerasin, O. S. (2017). Neuro-fuzzy observers of clamping force for magnetically operated movers of mobile robots. Tekhnichna Elektrodynamika, 2017 (5), 53–61. doi: https://doi.org/10.15407/techned2017.05.053
  40. Kondratenko, Y. P., Kondratenko, N. Y. (2016). Reduced library of the soft computing analytic models for arithmetic operations with asymmetrical fuzzy numbers. Soft Computing: Developments, Methods and Applications. New York, 1–38.
  41. Siahaan, A. P. U. (2016). Uncertainty Estimation of Drone Propellers Acceleration and Stability. International Journal of Engineering Development and Research. doi: https://doi.org/10.31227/osf.io/ghmns
  42. Trunov, A. (2016). Recurrent approximation as the tool for expansion of functions and modes of operation of neural network. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 41–48. doi: https://doi.org/10.15587/1729-4061.2016.81298
  43. Trunov, A., Belikov, A. (2015). Application of recurrent approximation to the synthesis of neural network for control of processes phototherapy. 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2015.7341389
  44. Trunov, A. (2016). Peculiarities of the interaction of electromagnetic waves with bio tissue and tool for early diagnosis, prevention and treatment. 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO). doi: https://doi.org/10.1109/elnano.2016.7493041
  45. Trunov, A. (2017). Theoretical predicting the probability of electron detachment for radical of cell photo acceptor. 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO). doi: https://doi.org/10.1109/elnano.2017.7939776
  46. Trunov, A. Recurrent Approximation in the Tasks of the Neural Network Synthesis for the Control of Process of Phototherapy // Computer Systems Healthcare and Medicine. Denmark, 2017. P. 213–248.
  47. Trunov, A., Malcheniuk, A. (2018). Recurrent network as a tool for calibration in automated systems and interactive simulators. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.126498

##submission.downloads##

Опубліковано

2018-08-16

Як цитувати

Trunov, A. (2018). Трансформація операцій з нечіткими множинами для розв’язку задач оптимального руху безекіпажних безпілотних апаратів. Eastern-European Journal of Enterprise Technologies, 4(4 (94), 43–50. https://doi.org/10.15587/1729-4061.2018.140641

Номер

Розділ

Математика та кібернетика - прикладні аспекти