Синтез Ni(OH)2 гомогенним темплатним осадженням для використання в електроді суперконденсатора без додавання зв’язуючої речовини

Автор(и)

  • Vadym Kovalenko Український державний хіміко-технологічний університет пр. Гагаріна, 8, м. Дніпро, Україна, 49005 Федеральне державне бюджетне освітня установа вищої освіти "Вятський державний університет" вул. Московська, 36, м. Кіров, Російська Федерація, 610000, Україна https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Український державний хіміко-технологічний університет пр. Гагаріна, 8, м. Дніпро, Україна, 49005 Федеральне державне бюджетне освітня установа вищої освіти "Вятський державний університет" вул. Московська, 36, м. Кіров, Російська Федерація, 610000, Україна https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2018.140899

Ключові слова:

гідроксид нікелю, темплатний синтез, гомогенне осадження, суперконденсатор, зв’язуюче

Анотація

Гідроксид нікелю широко використовується як активна речовина гібридних суперконденсаторів. Найбільш електрохімічно активним є α-Ni(OH)2, синтезований темплатним гомогеним осажденням. Недоліком об’ємного темплатного синтезу є включення темплату в склад гідроксиду та необхідність його видалення. Для перетворення недоліку в перевагу було запропоновано визначити можливість використання залишкової кількості темплату в якості внутрішнього зв’язуючого для виготовлення високоефективного намазного електроду суперконденсатора без введення зовнішнього зв’язуючого. Для цього були отримані зразки Ni(OH)2 методом темплатного гомогенного осадження при використанні в якості темплата полівінилового спирту та естеру целюлози Culminal C8465 з концентраціями 0,05 % и 0,5 %.

Структурні властивості зразків були вивчені методом рентгенофазового аналіза, розміри та морфологію частинок – методом скануючої електронної мікроскопії. Електрохімічні характеристики вивчались гальваностатичним зарядно-разрядним циклюванням намазного електрода, виготовленого без введения зв’язуючого, в режимі суперконденсатора.

Виявлено, что при використанні ПВС кристалічність суттєво вища, а частинки не утворюють крупних агрегатів. Збільшення концентрації ПВС в 10 разів не вплинуло на дані характеристики. При використанні Culminal C8465 кристалічність зразків нижча, при підвищенні концентрації вона збільшується. Збільшення концентрації Culminal C8465 також призводить до значної агрегації частинок. Показано різну поведінку ПВС та Culminal C8465. ПВС має слабку дію як зв’язуюча речовина, а Culminal C8465 має высокі зв’язуючі характеристики. Комплексним анализом електрохімічних характеристик намазних електродів, виготовлених без введения зовнішього зв’язуючого, доведена можливість використання залишкових кількостей темплата в якості внутрішнього зв’язуючого. Максимально отримана питома ємність для електрода без зовнішнього зв’язуючого склала 197 Ф/г при використанні в якості темплата Culminal C8465. Рекомендовано провести вибір для синтезу гідроксиду нікелю водорозчинного ВМС, здатного бути темплатом при синтезі та зв’язуючим при виготовленні намазного електроду

Біографії авторів

Vadym Kovalenko, Український державний хіміко-технологічний університет пр. Гагаріна, 8, м. Дніпро, Україна, 49005 Федеральне державне бюджетне освітня установа вищої освіти "Вятський державний університет" вул. Московська, 36, м. Кіров, Російська Федерація, 610000

Кандидат технічних наук, доцент

Кафедра аналітичної хімії та хімічної технології харчових добавок і косметичних засобів

Кафедра технології неорганічних речовин та технологій електрохімічних виробництв

Valerii Kotok, Український державний хіміко-технологічний університет пр. Гагаріна, 8, м. Дніпро, Україна, 49005 Федеральне державне бюджетне освітня установа вищої освіти "Вятський державний університет" вул. Московська, 36, м. Кіров, Російська Федерація, 610000

Кандидат технічних наук, доцент

Кафедра процесів і апаратів, та загальної хімічної технології

Кафедра технології неорганічних речовин та технологій електрохімічних виробництв

Посилання

  1. Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: https://doi.org/10.1038/nmat2297
  2. Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: https://doi.org/10.1016/j.electacta.2007.01.011
  3. Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1
  4. Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0
  5. Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7
  6. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
  7. Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: https://doi.org/10.1021/am504530e
  8. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2014). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792–20140792. doi: https://doi.org/10.1098/rspa.2014.0792
  9. Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. https://doi.org/10.15587/1729-4061.2017.90873
  10. Liu, C., Huang, L., Li, Y., Sun, D. (2010). Synthesis and electrochemical performance of amorphous nickel hydroxide codoped with Fe3+ and CO3. Ionics, 16 (3), 215–219. doi: https://doi.org/10.1007/s11581-009-0383-8
  11. Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH)2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172
  12. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2017). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2
  13. Xiao-yan, G., Jian-cheng, D. (2007). Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 61 (3), 621–625. doi: https://doi.org/10.1016/j.matlet.2006.05.026
  14. Tizfahm, J., Safibonab, B., Aghazadeh, M., Majdabadi, A., Sabour, B., Dalvand, S. (2014). Supercapacitive behavior of β-Ni(OH)2 nanospheres prepared by a facile electrochemical method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 544–551. doi: https://doi.org/10.1016/j.colsurfa.2013.12.024
  15. Aghazadeh, M., Golikand, A. N., Ghaemi, M. (2011). Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles. International Journal of Hydrogen Energy, 36 (14), 8674–8679. doi: https://doi.org/10.1016/j.ijhydene.2011.03.144
  16. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699
  17. Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
  18. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. (2012). Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel. The Journal of Physical Chemistry A, 116 (25), 6771–6784. doi: https://doi.org/10.1021/jp303546r
  19. Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: https://doi.org/10.15587/1729-4061.2016.79406
  20. Hu, M., Lei, L. (2006). Effects of particle size on the electrochemical performances of a layered double hydroxide, [Ni4Al(OH)10]NO3. Journal of Solid State Electrochemistry, 11 (6), 847–852. doi: https://doi.org/10.1007/s10008-006-0231-y
  21. Vasserman, I. N. (1980). Khimicheskoe osazdenie is rastvorov [Chemical precipitation from solutions]. Leningrad: Khimia, 208.
  22. Bora, M. (2013). Homogeneous precipitation of nickel hydroxide powders. Retrospective Theses and Dissertations. Iowa State University, 199. doi: https://doi.org/10.31274/rtd-180813-146
  23. Tang, H. W., Wang, J. L., Chang, Z. R. (2008). Preparation and characterization of nanoscale nickel hydroxide using hydrothermal synthesis method. J. Func. Mater, 39 (3), 469–476.
  24. Tang, Y., Liu, Y., Yu, S., Zhao, Y., Mu, S., Gao, F. (2014). Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochimica Acta, 123, 158–166. doi: https://doi.org/10.1016/j.electacta.2013.12.187
  25. Yang, L.-X., Zhu, Y.-J., Tong, H., Liang, Z.-H., Li, L., Zhang, L. (2007). Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol. Journal of Solid State Chemistry, 180 (7), 2095–2101. doi: https://doi.org/10.1016/j.jssc.2007.05.009
  26. Cui, H. L., Zhang, M. L. (2009). Synthesis of flower-like nickel hydroxide by ionic liquids-assisted. J. Yanan. Univ., 28 (2), 76–83.
  27. Xu, L., Ding, Y.-S., Chen, C.-H., Zhao, L., Rimkus, C., Joesten, R., Suib, S. L. (2008). 3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chemistry of Materials, 20 (1), 308–316. doi: https://doi.org/10.1021/cm702207w
  28. Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)[sub 2] Electrodes. Journal of The Electrochemical Society, 148 (10), A1179. doi: https://doi.org/10.1149/1.1403731
  29. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2(11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371
  30. Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
  31. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  32. Oliva, P., Leonardi, J., Laurent, J. F., Delmas, C., Braconnier, J. J., Figlarz, M. et. al. (1982). Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources, 8 (2), 229–255. doi: https://doi.org/10.1016/0378-7753(82)80057-8
  33. Mehdizadeh, R., Sanati, S., Saghatforoush, L. A. (2013). Effect of PEG6000 on the morphology the β-Ni(OH)2 nanostructures: solvothermal synthesis, characterization, and formation mechanism. Research on Chemical Intermediates, 41 (4), 2071–2079. doi: https://doi.org/10.1007/s11164-013-1332-8
  34. Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810
  35. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.103010
  36. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
  37. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
  38. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
  39. Ecsedi, Z., Lazău, I., Păcurariu, C. (2007). Synthesis of mesoporous alumina using polyvinyl alcohol template as porosity control additive. Processing and Application of Ceramics, 1 (1-2), 5–9. doi: https://doi.org/10.2298/pac0702005e
  40. Pon-On, W., Meejoo, S., Tang, I.-M. (2008). Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics, 112 (2), 453–460. doi: https://doi.org/10.1016/j.matchemphys.2008.05.082
  41. Miyake, K., Hirota, Y., Uchida, Y., Nishiyama, N. (2016). Synthesis of mesoporous MFI zeolite using PVA as a secondary template. Journal of Porous Materials, 23 (5), 1395–1399. doi: https://doi.org/10.1007/s10934-016-0199-7
  42. Wanchanthu, R., Thapol, A. (2011). The Kinetic Study of Methylene Blue Adsorption over MgO from PVA Template Preparation. Journal of Environmental Science and Technology, 4 (5), 552–559. doi: https://doi.org/10.3923/jest.2011.552.559
  43. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
  44. Tan, Y., Srinivasan, S., Choi, K.-S. (2005). Electrochemical Deposition of Mesoporous Nickel Hydroxide Films from Dilute Surfactant Solutions. Journal of the American Chemical Society, 127 (10), 3596–3604. doi: https://doi.org/10.1021/ja0434329
  45. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
  46. Parkhomchuk, E. V., Sashkina, K. A., Rudina, N. A., Kulikovskaya, N. A., Parmon, V. N. (2013). Template synthesis of 3D-structured macroporous oxides and hierarchical zeolites. Catalysis in Industry, 5 (1), 80–89. doi: https://doi.org/10.1134/s2070050412040150
  47. Gu, W., Liao, L. S., Cai, S. D., Zhou, D. Y., Jin, Z. M., Shi, X. B., Lei, Y. L. (2012). Adhesive modification of indium–tin-oxide surface for template attachment for deposition of highly ordered nanostructure arrays. Applied Surface Science, 258 (20), 8139–8145. doi: https://doi.org/10.1016/j.apsusc.2012.05.009

##submission.downloads##

Опубліковано

2018-08-21

Як цитувати

Kovalenko, V., & Kotok, V. (2018). Синтез Ni(OH)2 гомогенним темплатним осадженням для використання в електроді суперконденсатора без додавання зв’язуючої речовини. Eastern-European Journal of Enterprise Technologies, 4(12 (94), 29–35. https://doi.org/10.15587/1729-4061.2018.140899

Номер

Розділ

Матеріалознавство