Вплив карбонат-іона на характеристики електрохімічно синтезованого шарового (α+β) гідроксиду нікелю
DOI:
https://doi.org/10.15587/1729-4061.2019.155738Ключові слова:
гідроксид нікелю, шарова (α β) структура, питома ємність, лужний акумулятор, щілинний діафрагмовий електролізер, карбонатАнотація
Гідроксид нікелю широко використовується як активна речовина суперконденсаторів. Найбільш активними є зразки Ni(OH)2 (α+β) шарової структури, синтезовані в щілинному діафрагмовому електролізері (ЩДЕ). Вивчено вплив карбонат-аніона на структуру та електрохімічні властивості гідроксиду нікелю, шляхом синтезу зразків в щілинному діафрагмовому електролізері з використанням для розділення електродних просторів діафрагми та катіонообмінної мембрани. Експериментально показано, що при використанні діафрагми в щілинному діафрагмовому електролізері формується фільтраційний потік із анодного простору (який містить луг з домішкою карбонату) в катодний. Таким чином, зразки, синтезовані з діафрагмою, утворюються в присутності карбонатів, а зразки, синтезовані з катіонообмінною мембраною – у відсутності карбонатів. Кристалічна структура зразків вивчена методом рентгенофазового аналізу, електрохімічні характеристики – методами циклічної вольтамперометрії та гальваностатичного зарядно-розрядного циклування в акумуляторному режимі. Проведено порівняльний аналіз характеристик зразків, синтезованих в присутності та у відсутності карбонату. Методом ренгенофазового аналізу та циклічної вольтамперометрії доведена ключова роль карбонат-аніону у формуванні монофазної шарової (α+β) модифікації. У відсутності карбонату знижується кристалічність зразків, зменшується вміст α-модифікації, при високих густинах струму (12 и 15,7 А/дм2) формується біфазна система, що являє собою суміш β-модифікації та (α+β)-структури. Вивчення електрохімічних характеристик показало зниження питомої ємності на 14,7–31,4 % для зразків гідроксиду нікелю, сформованого у відсутності карбонатів. Максимальна отримана питома ємність зразків, синтезованих в щілинному діафрагмовому електролізері при густині струму 10 А/дм2 з діафрагмою (в присутності карбонатів) та з мембраною (у відсутності карбонатів) склали 216,8 и 185 мА·год/г відповідно. Для збільшення питомої ємності рекомендовано проводити синтез в щілинному діафрагмовому електролізері при використанні діафрагми, а також вводити додаткову кількість карбонату натрію в аноліт
Посилання
- Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2014). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792–20140792. doi: https://doi.org/10.1098/rspa.2014.0792
- Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030
- Chen, J. (1999). Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 146 (10), 3606. doi: https://doi.org/10.1149/1.1392522
- Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z., Myung, S.-T. (2013). Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 5 (21), 11434–11440. doi: https://doi.org/10.1021/am403684z
- Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1
- Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0
- Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7
- Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
- Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: https://doi.org/10.1021/am504530e
- Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
- Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.
- Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
- Wang, Y., Zhang, D., Peng, W., Liu, L., Li, M. (2011). Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochimica Acta, 56 (16), 5754–5758. doi: https://doi.org/10.1016/j.electacta.2011.04.049
- Huang, W., Li, Z. L., Peng, Y. D., Chen, S., Zheng, J. F., Niu, Z. J. (2005). Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)2 film electrode. Journal of Solid State Electrochemistry, 9 (5), 284–289. doi: https://doi.org/10.1007/s10008-004-0599-5
- Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z. (2014). Hierarchical Macro-Mesoporous Ni(OH)2 for Nonenzymatic Electrochemical Sensing of Glucose. Journal of the Electrochemical Society, 161 (10), B201–B206. doi: https://doi.org/10.1149/2.0251410jes
- Miao, Y., Ouyang, L., Zhou, S., Xu, L., Yang, Z., Xiao, M., Ouyang, R. (2014). Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors and Bioelectronics, 53, 428–439. doi: https://doi.org/10.1016/j.bios.2013.10.008
- Ramesh, T. N., Kamath, P. V., Shivakumara, C. (2005). Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 152 (4), A806. doi: https://doi.org/10.1149/1.1865852
- Zhao, Y., Zhu, Z., Zhuang, Q.-K. (2005). The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior. Journal of Solid State Electrochemistry, 10 (11), 914–919. doi: https://doi.org/10.1007/s10008-005-0035-5
- Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: https://doi.org/10.1149/1.1393480
- Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: https://doi.org/10.1023/a:1003493711239
- Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050
- Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
- Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041
- Cordoba de Torresi, S. I., Provazi, K., Malta, M., Torresib, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes. Journal of The Electrochemical Society, 148 (10), A1179–A1184. doi: https://doi.org/10.1149/1.1403731
- Zhang, Z., Zhu, Y., Bao, J., Zhou, Z., Lin, X., Zheng, H. (2012). Structural and electrochemical performance of additives-doped α-Ni(OH)2. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27 (3), 538–541. doi: https://doi.org/10.1007/s11595-012-0500-9
- Sugimoto, A. (1999). Preparation and Characterization of Ni/Al-Layered Double Hydroxide. Journal of The Electrochemical Society, 146 (4), 1251–1255. doi: https://doi.org/10.1149/1.1391754
- Zhen, F. Z., Quan, J. W., Min, Y. L., Peng, Z., Jun, J. L. (2004). A study on the structure and electrochemical characteristics of a Ni/Al double hydroxide. Metals and Materials International, 10 (5), 485–488. doi: https://doi.org/10.1007/bf03027353
- Liu, B., Wang, X. Y., Yuan, H. T., Zhang, Y. S., Song, D. Y., Zhou, Z. X. (1999). Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. Journal of Applied Electrochemistry, 29 (7), 853–858. doi: https://doi.org/10.1023/a:1003537900947
- Caravaggio, G. A., Detellier, C., Wronski, Z. (2001). Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides. Journal of Materials Chemistry, 11 (3), 912–921. doi: https://doi.org/10.1039/b004542j
- Li, Y. W., Yao, J. H., Liu, C. J., Zhao, W. M., Deng, W. X., Zhong, S. K. (2010). Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 35 (6), 2539–2545. doi: https://doi.org/10.1016/j.ijhydene.2010.01.015
- Zhao, Y. (2004). Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea. International Journal of Hydrogen Energy, 29 (8), 889–896. doi: https://doi.org/10.1016/j.ijhydene.2003.10.006
- Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: https://doi.org/10.1016/j.electacta.2008.07.004
- Faour, A., Mousty, C., Prevot, V., Devouard, B., De Roy, A., Bordet, P. et. al. (2012). Correlation among Structure, Microstructure, and Electrochemical Properties of NiAl–CO3 Layered Double Hydroxide Thin Films. The Journal of Physical Chemistry C, 116 (29), 15646–15659. doi: https://doi.org/10.1021/jp300780w
- Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of NiAl hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
- Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
- Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699
- Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
- Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172
- Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
- Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2
- Miao, C., Zhu, Y., Zhao, T., Jian, X., Li, W. (2015). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO4 3−. Ionics, 21 (12), 3201–3208. doi: https://doi.org/10.1007/s11581-015-1507-y
- Li, Y., Yao, J., Zhu, Y., Zou, Z Wang, H. (2012). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 203, 177–183. doi: https://doi.org/10.1016/j.jpowsour.2011.11.081
- Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
- Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
- Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764
- Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
- Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
- Deabate, S., Fourgeot, F., Henn, F. (1999). Structural and electrochemical characterization of nickel hydroxide obtained by the new synthesis route of electrodialysis. a comparison with spherical β-Ni(OH)2. Ionics, 5 (5-6), 371–384. doi: https://doi.org/10.1007/bf02376001
- Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472
- Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2019 Vadym Kovalenko, Valerii Kotok
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.