Розроблення вогнестійких тепло- та звукоізоляційних плит з деревної шерсті

Автор(и)

  • Yuriy Tsapko Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041 Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0003-0625-0783
  • Denys Zavialov Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041, Україна https://orcid.org/0000-0002-9532-0060
  • Olga Bondarenko Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0002-8164-6473
  • Olena Pinchevsʹka Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041, Україна https://orcid.org/0000-0001-8123-5490
  • Nataliia Marchenco Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041, Україна https://orcid.org/0000-0003-1826-930X
  • Sergii Guzii Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0003-0147-5035

DOI:

https://doi.org/10.15587/1729-4061.2019.166375

Ключові слова:

тепло- та звукоізоляційні матеріали, деревна шерсть, теплопровідність, звукоізоляція, неорганічне і органо-мінеральне в’яжуче

Анотація

Проведеними дослідженнями встановлено можливості виготовлення тепло- та звукоізоляційних матеріалів для облаштування приміщень. Сировиною для їхнього виробництва є деревні волокна, які виготовляють у виді плоских плит. Встановлено механізми процесу тепло- та звукоізоляції при передаванні енергії через матеріал, що дає можливість впливати на цей процес. Доведено, що вони полягають у зниженні пористості матеріалу. Так, зі зменшенням об'ємної маси матеріалу, теплопровідність і передача звуку зменшується, і навпаки. Крім того, тепло- та звукоізоляційні будівельні матеріали з деревини повинні задовольняти наступним вимогам: мати стабільні теплоізоляційні і акустичні показники протягом усього періоду експлуатації та бути вогнестійкими і не виділяти в навколишнє середовище шкідливих речовин. Експериментальними дослідженнями підтверджено, що матеріал на основі деревної шерсті і неорганічного в’яжучого при співвідношенні 1:1 відноситься до горючих матеріалів, оскільки, під час температурного впливу було зафіксовано його тління. Так, під термічною дією протягом 90 с матеріал зайнявся і полум’я поширилося по першим трьом зонам протягом 41 с. Натомість, підвищення кількості в’яжучого на неорганічній основі та застосування органо-мінерального в’яжучого, не призводить до загорання матеріалу. При цьому максимальна температура димових газів становила близько 120 °C, а індекс горючості складав 0 за рахунок розкладання антипіренів під дією температури з виділенням негорючих газів, які гальмують процеси окиснення матеріалу та суттєво підвищують утворення на поверхні матеріалу теплозахисного шару коксу. Це приводить до гальмування теплопередачі високотемпературного полум’я до матеріалу. Завдяки цьому стало можливим визначення умов вогнестійкості матеріалу шляхом утворення бар'єру для теплопровідності. Це дозволяє стверджувати про відповідність виявленого механізму формування властивостей матеріалу на основі деревної шерсті і неорганічного та органо-мінерального в’яжучого та практичну привабливість запропонованих технологічних рішень. Останні, зокрема, стосуються визначення кількості складової в’яжучого, оскільки при малих кількостях проходить процес горіння. Таким чином, є підстави стверджувати про можливість спрямованого регулювання процесів формування деревинних тепло- та звукоізоляційних матеріалів шляхом використання деревної шерсті і неорганічного та органо-мінерального в’яжучого, які здатні утворювати на поверхні матеріалу вогнезахисну плівку

Біографії авторів

Yuriy Tsapko, Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041 Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Доктор технічних наук

Науково-дослідний інститут в’яжучих речовин і матеріалів ім. В. Д. Глуховського

Denys Zavialov, Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041

Аспірант

Кафедра технологій та дизайну виробів з деревини

Olga Bondarenko, Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Кандидат технічних наук, доцент

Кафедра будівельних матеріалів

Olena Pinchevsʹka, Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041

Доктор технічних наук, професор

Кафедра технологій та дизайну виробів з деревини

Nataliia Marchenco, Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041

Кандидат технічних наук, доцент

Кафедра технологій та дизайну виробів з деревини

Sergii Guzii, Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Кандидат технічних наук, старший науковий співробітник

Науково-дослідний інститут в’яжучих речовин і матеріалів ім. В. Д. Глуховського

Посилання

  1. Tsapko, Y., Tsapko, А. (2017). Establishment of the mechanism and fireproof efficiency of wood treated with an impregnating solution and coatings. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 50–55. doi: https://doi.org/10.15587/1729-4061.2017.102393
  2. Tsapko, Y., Tsapko, А. (2018). Modeling a thermal conductivity process under the action of flame on the wall of fire­retardant reed. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 50–56. doi: https://doi.org/10.15587/1729-4061.2018.128316
  3. Tsapko, Y., Guzii, S., Remenets, M., Kravchenko, A., Tsapko, O. (2016). Evaluation of effectiveness of wood fire protection upon exposure to flame of magnesium. Eastern-European Journal of Enterprise Technologies, 4 (10 (82)), 31–36. doi: https://doi.org/10.15587/1729-4061.2016.73543
  4. Tsapko, Y., Kyrycyok, V., Tsapko, A., Bondarenko, O., Guzii, S. (2018). Increase of fire resistance of coating wood with adding mineral fillers. MATEC Web of Conferences, 230, 02034. doi: https://doi.org/10.1051/matecconf/201823002034
  5. Babashov, V. G., Bespalov, A. S., Istomin, A. V., Varrik, N. M. (2017). Heat and Sound Insulation Material Prepared Using Plant Raw Material. Refractories and Industrial Ceramics, 58 (2), 208–213. doi: https://doi.org/10.1007/s11148-017-0082-3
  6. Danilov, V., Ayzenshtadt, A., Makhova, T. (2018). Obtaining and characterization of wood-mineral Composites. 18th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 18, 347–354. doi: https://doi.org/10.5593/sgem2018/6.1/s24.047
  7. Brencis, R., Pleiksnis, S., Skujans, J., Adamovics, A., Gross, U. (2017). Lightweight composite building materials with hemp (Cannabis sativa L.) additives. Chemical Engineering Transactions, 57, 1375–1380. doi: http://doi.org/10.3303/CET1757230
  8. Li, Z., Ma, J., Ma, H., Xu, X. (2018). Properties and Applications of Basalt Fiber and Its Composites. IOP Conference Series: Earth and Environmental Science, 186, 012052. doi: https://doi.org/10.1088/1755-1315/186/2/012052
  9. Zaryoun, M., Hosseini, M. (2018). Lightweight fiber-reinforced clay as a sustainable material for disaster resilient architecture of future buildings. Architectural Engineering and Design Management, 1–15. doi: https://doi.org/10.1080/17452007.2018.1540968
  10. Alabdulkarem, A., Ali, M., Iannace, G., Sadek, S., Almuzaiqer, R. (2018). Thermal analysis, microstructure and acoustic characteristics of some hybrid natural insulating materials. Construction and Building Materials, 187, 185–196. doi: https://doi.org/10.1016/j.conbuildmat.2018.07.213
  11. Grickus, A., Guseynov, S. E. (2015). On one Mathematical Model for Dynamics of Propagation and Retention of Heat over New Fibre Insulation Coating. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, 3 (82). doi: https://doi.org/10.17770/etr2015vol3.504
  12. Chen, H., Yuan, J., Zhong, Q., Li, K. (2017). Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments. Vibroengineering PROCEDIA, 11, 161–166. doi: https://doi.org/10.21595/vp.2017.18481
  13. Erdoǧan, Y. (2016). Production of an insulation material from carpet and boron wastes. Bulletin of the Mineral Research and Exploration, 152, 197–202. doi: https://doi.org/10.19111/bmre.74700
  14. Apostoliuk, S. O., Dzhyhyrei, V. S., Sokolovskyi, I. A. et. al. (2012). Promyslova ekolohiya. Kyiv: Znannia, 430.
  15. Bobrov, Yu. L., Ovcharenko, Е. G., Shoyhet, B. M., Petuhova, Е. Yu. (2003). Teploizolyacionnye materialy i konstrukcii. Moscow: INFRA-M, 268.
  16. Konstruktsiyi budynkiv ta sporud. Teplova izoliatsiya budivel: DBN V.2.6-31:2006. zi Zminoiu No. 1 vid 1 lypnia 2013 roku (2006). Kyiv: Minbud Ukrainy, 70.
  17. DSTU B EN ISO 1716:2011. Vyprobuvannia vyrobiv shchodo reaktsiyi na vohon. Vyznachennia vyshchoi (nyzhchoi) teploty zghoriannia (EN ISO 1716:2010, IDT) (2012). Kyiv: Minrehionbud Ukrainy, 37.
  18. Tsapko, Y. (2013). Effect of surface treatment of wood on the fire resistance of wooden structures. Eastern-European Journal of Enterprise Technologies, 5 (5 (65)), 11–14. Available at: http://journals.uran.ua/eejet/article/view/18104/15850

##submission.downloads##

Опубліковано

2019-05-08

Як цитувати

Tsapko, Y., Zavialov, D., Bondarenko, O., Pinchevsʹka, O., Marchenco, N., & Guzii, S. (2019). Розроблення вогнестійких тепло- та звукоізоляційних плит з деревної шерсті. Eastern-European Journal of Enterprise Technologies, 3(10 (99), 24–31. https://doi.org/10.15587/1729-4061.2019.166375

Номер

Розділ

Екологія