Розробка нейромережевих і нечітких моделей багатомасових електромеханічних систем

Автор(и)

  • Gennady Kaniuk Українська інженерно-педагогічна академія вул. Університетська, 16, м. Харків, Україна, 61003, Україна https://orcid.org/0000-0003-1399-9039
  • Tetiana Vasylets Українська інженерно-педагогічна академія вул. Університетська, 16, м. Харків, Україна, 61003, Україна https://orcid.org/0000-0002-2148-8645
  • Oleksiy Varfolomiyev DeVry University Madison ave., 180, New York, USA, 10016, США https://orcid.org/0000-0001-7110-0760
  • Andrey Mezerya Українська інженерно-педагогічна академія вул. Університетська, 16, м. Харків, Україна, 61003, Україна https://orcid.org/0000-0003-2946-9593
  • Nataliia Antonenko Українська інженерно-педагогічна академія вул. Університетська, 16, м. Харків, Україна, 61003, Україна https://orcid.org/0000-0001-8319-2826

DOI:

https://doi.org/10.15587/1729-4061.2019.169080

Ключові слова:

ідентифікація багатомасових систем, нейромережеві моделі, нечіткі апроксимуючі системи, гібридні мережі

Анотація

Метою роботи є побудова моделей багатомасових електромеханічних систем з застосуванням нейронних мереж, систем нечіткого висновку і гібридних мереж інструментальними засобами MATLAB. Модель системи у вигляді нейронної мережі або системи нейро-нечіткого висновку будується на основі відомих вхідних сигналів і виміряних сигналів на виході системи. При проведенні досліджень використані методи теорії штучних нейронних мереж і методи технології нечіткого моделювання.

Виконано синтез нейронної мережі для вирішення завдання ідентифікації електромеханічної системи із складними кінематичними зв’язками з застосуванням пакету прикладних програм Neural Network Toolbox системи MATLAB. Розглянуто можливість вирішення задачі ідентифікації за допомогою нечіткої апроксимуючої системи з використанням пакету Fuzzy Logic Toolbox. Проведено синтез гібридні мережі, реалізованої у формі адаптивної систем нейро-нечіткого висновку з застосуванням редактора ANFIS. Надано рекомендації з вибору параметрів, що найбільш суттєво впливають на точності ідентифікації при застосуванні розглянутих методів. Показано, що використання нейронних мереж і адаптивних систем нейро-нечіткого висновку дозволяє виконувати ідентифікацію систем з точністю 4–5 %.

В результаті проведених досліджень показана ефективність застосування нейронних мереж, систем нечіткого висновку і гібридних мереж для ідентифікації систем із складними кінематичними зв’язками при наявності інформації «вхід-вихід». Виконано синтез нейромережевої, нечіткої і нейро-нечіткої моделей двомасової електромеханічної системи з використанням сучасних програмних засобів.

Розглянутий підхід використання технологій штучного інтелекту – нейронних мереж і нечіткої логіки – є перспективним напрямом для побудови відповідних нейромережевих і нейро-нечітких моделей технологічних об'єктів і систем. Результати досліджень можуть бути використані при синтезі регуляторів систем із складними кінематичними зв’язками для забезпечення високих показників якості функціонування систем

Біографії авторів

Gennady Kaniuk, Українська інженерно-педагогічна академія вул. Університетська, 16, м. Харків, Україна, 61003

Доктор технічних наук, професор

Кафедра теплоенергетики та енергозберігаючих технологій

 

Tetiana Vasylets, Українська інженерно-педагогічна академія вул. Університетська, 16, м. Харків, Україна, 61003

Кандидат технічних наук, доцент

Кафедра теплоенергетики та енергозберігаючих технологій

Oleksiy Varfolomiyev, DeVry University Madison ave., 180, New York, USA, 10016

Кандидат технічних наук

Andrey Mezerya, Українська інженерно-педагогічна академія вул. Університетська, 16, м. Харків, Україна, 61003

Кандидат технічних наук, доцент

Кафедра теплоенергетики та енергозберігаючих технологій

Nataliia Antonenko, Українська інженерно-педагогічна академія вул. Університетська, 16, м. Харків, Україна, 61003

Кандидат технічних наук, доцент

Кафедра теплоенергетики та енергозберігаючих технологій

Посилання

  1. Akimov, L. V., Kolotilo, V. I., Markov, V. S. (2000). Dinamika dvuhmassovyh sistem s netraditsionnymi regulyatorami skorosti i nablyudatelyami sostoyaniya. Kharkiv: HGPU, 93.
  2. Kotlyarov, V. O., Osichev, A. V. (2010). O rezul'tatah resheniya zadach stabilizatsii sistem s otritsatel'nym vyazkim treniem posredstvom primeneniya nablyudayuschih ustroystv. Visnyk Natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi instytut», 28, 242–248.
  3. Kuznetsov, B. I., Nikitina, T. B., Kolomiets, V. V., Voloshko, O. V., Kobylianskyi, B. B. (2017). Bahatokryterialnyi syntez neliniynykh robastnykh elektromekhanichnykh system. Visnyk Natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi instytut», 27 (1249), 58–61.
  4. Pivniak, H. H., Beshta, O. S., Tulub, S. B.; Pivniak, H. H. (Ed.) (2004). Tsyfrova identyfikatsiya parametriv elektromekhanichnykh system v zadachakh enerho- i resursozberezhennia. Dnipropetrovsk: Natsionalnyi hirnychyi universytet, 197.
  5. Balyuta, S., Kopilova, L., Klimenko, J. (2013). Identification of the parameters of electro-mechanical system model based on genetic algorithms. Naukovi pratsi NUKhT, 49, 88–97.
  6. Saushev, A. V., Trojan, D. I. (2015). Identification of electric drives of port reloading cars. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, 5 (33), 169–183. doi: https://doi.org/10.21821/2309-5180-2015-7-5-169-183
  7. Vodovozov, A. M., Еlyukov, A. S. (2009). Algorithms of parametrical identification of electromechanical systems protected against hindrance. Izvestiya vysshih uchebnyh zavedeniy, 52 (12), 40–43.
  8. Luczak, D., Zawirski, K. (2015). Parametric identification of multi-mass mechanical systems in electrical drives using nonlinear least squares method. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. doi: https://doi.org/10.1109/iecon.2015.7392730
  9. Nouri, K., Loussifi, H., Braiek, N. B. (2014). A comparative study on the identification of the dynamical model of multi-mass electrical drives using wavelet transforms. International Journal of Systems Science, 45 (11), 2223–2241. doi: https://doi.org/10.1080/00207721.2013.766772
  10. Villwock, S., Pacas, M. (2008). Application of the Welch-Method for the Identification of Two- and Three-Mass-Systems. IEEE Transactions on Industrial Electronics, 55 (1), 457–466. doi: https://doi.org/10.1109/tie.2007.909753
  11. Zoubek, H., Pacas, M. (2011). An identification method for multi-mass-systems in speed-sensorless operation. 2011 IEEE International Symposium on Industrial Electronics. doi: https://doi.org/10.1109/isie.2011.5984447
  12. Zoubek, H., Pacas, M. (2010). A method for speed-sensorless identification of two-mass-systems. 2010 IEEE Energy Conversion Congress and Exposition. doi: https://doi.org/10.1109/ecce.2010.5618431
  13. Luczak, D., Nowopolski, K. (2014). Identification of multi-mass mechanical systems in electrical drives. Proceedings of the 16th International Conference on Mechatronics - Mechatronika 2014. doi: https://doi.org/10.1109/mechatronika.2014.7018271
  14. Saarakkala, S. E., Leppinen, T., Hinkkanen, M., Luomi, J. (2012). Parameter estimation of two-mass mechanical loads in electric drives. 2012 12th IEEE International Workshop on Advanced Motion Control (AMC). doi: https://doi.org/10.1109/amc.2012.6197104
  15. Saarakkala, S. E., Hinkkanen, M. (2015). Identification of Two-Mass Mechanical Systems Using Torque Excitation: Design and Experimental Evaluation. IEEE Transactions on Industry Applications, 51 (5), 4180–4189. doi: https://doi.org/10.1109/tia.2015.2416128
  16. Abou-Zayed, U., Ashry, M., Breikin, T. (2008). Experimental open-loop and closed-loop identification of a multi-mass electromechanical servo system. Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics Service, 188–196. doi: https://doi.org/10.5220/0001502601880193
  17. Konev, V. V. (2016). Improved algorithms of teaching of neuronet system of authentication of the safe state of immobile objects of systems of critical application. Systemy obrobky informatsiyi, 3, 241–245.
  18. Horbiichuk, M. I., Humeniuk, T. V. (2017). Neural network identification technology for manufacturing operations of drilling rig. Naukovyi visnyk NHU, 3, 107–113.
  19. Lyashenko, S. A. (2007). Postroenie modeli nelineynogo dinamicheskogo obekta na osnove modifitsirovannoy radial'no-bazisnoy seti. Vestnik Hersonskogo natsional'nogo tekhnicheskogo universiteta, 4 (27), 33–35.
  20. Kondratenko, Yu. P., Hordyenko, E. V. (2010). Neiromerezhevyi pidkhid do rishennia zadachi identyfikatsiyi nestatsionarnykh parametriv tekhnolohichnykh obiektiv. Visnyk NTU «KhPI». Tematychnyi vypusk: Informatyka i modeliuvannia, 21, 102–109.
  21. Jurado, F., Flores, M. A., Santibanez, V., Llama, M. A., Castaneda, C. E. (2011). Continuous-Time Neural Identification for a 2 DOF Vertical Robot Manipulator. 2011 IEEE Electronics, Robotics and Automotive Mechanics Conference. doi: https://doi.org/10.1109/cerma.2011.20
  22. Castañeda, C. E., Esquivel, P. (2012). Decentralized neural identifier and control for nonlinear systems based on extended Kalman filter. Neural Networks, 31, 81–87. doi: https://doi.org/10.1016/j.neunet.2012.03.005
  23. Nidhil, K. J., Sreeraj, S., Vijay, B., Bagyaveereswaran, V. (2015). System identification using artificial neural network. 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]. doi: https://doi.org/10.1109/iccpct.2015.7159360
  24. Zhang, J., Li, Y., Wu, X. (2015). Neural network identification and control for nonlinear dynamic systems with time delay. 2015 34th Chinese Control Conference (CCC). doi: https://doi.org/10.1109/chicc.2015.7260183
  25. Ren, X. M., Rad, A. B. (2007). Identification of Nonlinear Systems With Unknown Time Delay Based on Time-Delay Neural Networks. IEEE Transactions on Neural Networks, 18 (5), 1536–1541. doi: https://doi.org/10.1109/tnn.2007.899702
  26. Alanis, A. Y., Rios, J. D., Arana-Daniel, N., Lopez-Franco, C. (2016). Neural identifier for unknown discrete-time nonlinear delayed systems. Neural Computing and Applications, 27 (8), 2453–2464. doi: https://doi.org/10.1007/s00521-015-2016-7
  27. Viattchenin, D. A., Starovoitov, V. V. (2010). Objects Identification Through Fuzzy Inference System. Shtuchnyi intelekt, 3, 312–321.
  28. Udovenko, S. G., Dibe, G., Perepelitsa, V. I. (2008). Method of fuzzy identification of nonlinear objects of digital control. Zbirnyk naukovykh prats Kharkivskoho universytetu Povitrianykh Syl, 3 (18), 131–134.
  29. Horbiychuk, M., Humeniuk, T., Povarchuk, D. (2015). Fuzzy Identification of Technological Objects. Energy Engineering and Control Systems, 1 (1), 35–42. doi: https://doi.org/10.23939/jeecs2015.01.035
  30. Dovžan, D., Škrjanc, I. (2011). Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes. ISA Transactions, 50 (2), 159–169. doi: https://doi.org/10.1016/j.isatra.2011.01.004
  31. Bertone, A. M. A., Martins, J. B., Yamanaka, K. (2018). Black-Box Fuzzy Identification of a Nonlinear Hydrogen Fuel Cell Model. TEMA (São Carlos), 18 (3), 405. doi: https://doi.org/10.5540/tema.2017.018.03.405
  32. Kim, Y., Langari, R., Hurlebaus, S. (2011). MIMO fuzzy identification of building-MR damper systems. Journal of Intelligent and Fuzzy Systems, 22 (4), 185–205. doi: http://doi.org/10.3233/IFS-2011-0482
  33. Bottura, C. P., de Oliveira Serra, G. L. (2004). An algorithm for fuzzy identification of nonlinear discrete-time systems. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). doi: https://doi.org/10.1109/cdc.2004.1429670
  34. Wan, G., Wan, S., Chen, H., Wang, K., Lv, C. (2018). Fuzzy Identification of the Time- and Space-Dependent Internal Surface Heat Flux of Slab Continuous Casting Mold. Journal of Heat Transfer, 140 (12), 122301. doi: https://doi.org/10.1115/1.4040955
  35. Zeng, F., Zhang, B., Zhang, L., Ji, J., Jin, W. (2016). Fuzzy Identification Based on T-S Fuzzy Model and Its Application for SCR System. Mechanical Engineering and Control Systems, 293–297. doi: https://doi.org/10.1142/9789814740616_0064
  36. Sorokina, I. V., Tokareva, Е. V., Sorokin, R. V. (2015). Identifikatsiya nelineynyh obektov s ispol'zovaniem adaptivnyh nechetkih modeley. Tekhnologiya priborostroeniya, 2, 35–39.
  37. Subbotin, S. A. (2011). The Identification of Neuro-Fuzzy Models for Technical Diagnosis Problem Solving. Shtuchnyi intelekt, 1 (33), 251–254.
  38. Agamalov, O. N. (2003). Otsenka tekhnicheskogo sostoyaniya elektrooborudovaniya v real'nom masshtabe vremeni metodom neyro-nechetkoy identifikatsii. ExponentaPro: Matematika v prilozheniyah, 12, 36–44.
  39. Liang, Y. C., Feng, D. P., Liu, G. R., Yang, X. W., Han, X. (2003). Neural identification of rock parameters using fuzzy adaptive learning parameters. Computers & Structures, 81 (24-25), 2373–2382. doi: https://doi.org/10.1016/s0045-7949(03)00303-1
  40. Yu, W., Li, X. (2004). Fuzzy Identification Using Fuzzy Neural Networks With Stable Learning Algorithms. IEEE Transactions on Fuzzy Systems, 12 (3), 411–420. doi: https://doi.org/10.1109/tfuzz.2004.825067
  41. Serra, G. L. O., Bottura, C. P. (2005). An IV-QR Algorithm for Neuro-Fuzzy Multivariable On-line Identification. 2005 IEEE International Conference on Systems, Man and Cybernetics. doi: https://doi.org/10.1109/icsmc.2005.1571589
  42. D'yakonov, V. P., Kruglov, V. V. (2006). MATLAB 6.5 SR1/7/7 SR1/1 SR2 + Simulink 5/6: Instrumenty iskusstvennogo intellekta i bioinformatiki: seriya "Biblioteka professionala". Moscow: SOLON-PRЕSS, 456.

##submission.downloads##

Опубліковано

2019-05-29

Як цитувати

Kaniuk, G., Vasylets, T., Varfolomiyev, O., Mezerya, A., & Antonenko, N. (2019). Розробка нейромережевих і нечітких моделей багатомасових електромеханічних систем. Eastern-European Journal of Enterprise Technologies, 3(2 (99), 51–63. https://doi.org/10.15587/1729-4061.2019.169080