Prediction of spot welding parameters using fuzzy logic controlling

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2019.172642

Ключові слова:

Resistance Spot welding (RSW), Austenitic Stainless Steels (AISI 304), Fuzzy Logic Control (FLC)

Анотація

The Resistance Spot Welding (RSW) represents one of the most important welding processes. The resistance spot welding quality depends on the process parameters like welding current, electrode force and welding time and their chosen levels. In this work, the experimental part is validated by the simulation part, where the last will be used later for predicting the results for new data with a very acceptable percentage of accuracy. This study presents an experimental work of the resistance spot welding for two similar sheets of Austenitic Stainless Steels (AISI 304) that are intended to be held together in one point by the pressure of the electrodes, with high magnitude of electrical current to be applied, where the resistance spot welding parameters (welding current and welding time) are changeable to show each of the parameter’s action on the welded material properties (The Maximum Shear Load that the metal can be subject to besides The Nugget Zone Diameter of the welded contact area). The experimental work in this study delivers genuine and important data that will be the basis for the Fuzzy Logic Controller (FLC), which will be set up then. The Artificial Intelligence (which is presented by the fuzzy logic controller) role is to predict the optimal welded material parameters for any given resistance spot welding parameters, and to discover the probability of expulsion, failure, or breaking in the welding process before it takes place or happens, where in this study, the FLC predicted the optimum value of the maximum shear load for RSW, which occurs at the welding time=20 cycle and the welding current=8 KA, while the estimated optimum value of the Nugget Diameter by FLC for RSW is found at welding time=20 cycle and welding current=8 KA.

This prediction will save the metal parts and the electrodes of welding, besides saving the cost and the effort

Спонсор дослідження

  • The authors want to acknowledge the laboratories in Al Khwarizmi College of Engineering in the University of Baghdad for the completion of this work.

Біографії авторів

Hiba Khalid Hussein, Al Khwarizmi College of Engineering University of Baghdad Al-Jadriyah, Karrada district, Baghdad, Iraq, 10071

Master of Mechanical Engineering

Department of Automated Manufacturing Engineering

Israa Rafie Shareef, Al Khwarizmi College of Engineering University of Baghdad Al-Jadriyah, Karrada district, Baghdad, Iraq, 10071

Master of Mechatronics Engineering

Department of Mechatronics Engineering

Iman Ahmed Zayer, Al Khwarizmi College of Engineering University of Baghdad Al-Jadriyah, Karrada district, Baghdad, Iraq, 10071

Master of Mechatronics Engineering

Department of Mechatronics Engineering

Посилання

  1. Podržaj, P., Simončič, S. (2010). Resistance spot welding control based on fuzzy logic. The International Journal of Advanced Manufacturing Technology, 52 (9-12), 959–967. doi: https://doi.org/10.1007/s00170-010-2794-0
  2. Agashe, S., Zhang, H. (2003). Selection of schedules based on heat balance in resistance spot welding. Welding Journal, 82 (7), 179S–183S.‏
  3. Pouranvari, M., Abedi, A., Marashi, P., Goodarzi, M. (2008). Effect of expulsion on peak load and energy absorption of low carbon steel resistance spot welds. Science and Technology of Welding and Joining, 13 (1), 39–43. doi: https://doi.org/10.1179/174329307x249342
  4. Marashi, P., Pouranvari, M., Amirabdollahian, S., Abedi, A., Goodarzi, M. (2008). Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels. Materials Science and Engineering: A, 480 (1-2), 175–180. doi: https://doi.org/10.1016/j.msea.2007.07.007
  5. Fundamentals of American Welding Society (1980). Welding Handbook. Vol. 1.
  6. Pandey, A. K., Khan, M. I., Moeed, K. M. (2013). Optimization of resistance spot welding parameters using Taguchi method. International Journal of Engineering Science and Technology, 5 (2), 234–241.‏
  7. Mustafa, F. F., Nacy, S. M., Alsahib, N. K. (2008). Spot welding residual stresses assessment using nonlinear numerical technique. Journal of Engineering, 14 (1), 2202–2215.‏
  8. Thakur, A. G., Bhosale, K. C. (2015). Application of Fuzzy Logic Method for Optimisation of Spot Welding Parameters of Stainless Steel (AISI 304). Trends in Mechanical Engineering & Technology, 5 (1), 51–56.
  9. Bouyousfi, B., Sahraoui, T., Guessasma, S., Chaouch, K. T. (2007). Effect of process parameters on the physical characteristics of spot weld joints. Materials & Design, 28 (2), 414–419. doi: https://doi.org/10.1016/j.matdes.2005.09.020
  10. Luo, Y., Liu, J., Xu, H., Xiong, C., Liu, L. (2009). Regression modeling and process analysis of resistance spot welding on galvanized steel sheet. Materials & Design, 30 (7), 2547–2555. doi: https://doi.org/10.1016/j.matdes.2008.09.031
  11. Karad, A. A., Shete, V. S., Boraste, N. V. (2016). Optimization of resistance spot welding process parameter by Taguchi method. International Journal of Engineering Research and General Science, 4 (2), 679–684.‏
  12. Tong, L. I., Su, C. T. (1997). Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making. Quality and Reliability Engineering International, 13 (1), 25–34.‏ doi: https://doi.org/10.1002/(sici)1099-1638(199701)13:1<25::aid-qre59>3.0.co;2-b
  13. El Ouafi, A., Bélanger, R., Méthot, J. F. (2011). Artificial neural network-based resistance spot welding quality assessment system. Revue de Métallurgie, 108 (6), 343–355. doi: https://doi.org/10.1051/metal/2011066
  14. Hellmann, M. Fuzzy Logic Introduction.‏ Available at: http://epsilon.nought.de/tutorials/fuzzy/fuzzy.pdf
  15. Podržaj, P., Simončič, S. (2010). Resistance spot welding control based on fuzzy logic. The International Journal of Advanced Manufacturing Technology, 52 (9-12), 959–967. doi: https://doi.org/10.1007/s00170-010-2794-0
  16. ASTM E8 / E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials (2013). ASTM International, West Conshohocken, PA. doi: https://doi.org/10.1520/e0008_e0008m-13a
  17. Gupta, N., Parmar, R. S. (1999). Development of mathematical model for the prediction of Austenitic stainless steel AISI 304. IWC, 597–605.‏
  18. Muhammad, N., Manurung, Y. H. P., Hafidzi, M., Abas, S. K., Tham, G., Haruman, E. (2012). Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi-objective Taguchi method and RSM. Journal of Mechanical Science and Technology, 26 (8), 2365–2370. doi: https://doi.org/10.1007/s12206-012-0618-x
  19. Hsiao, F.-H., Xu, S.-D., Lin, C.-Y., Tsai, Z.-R. (2008). Robustness Design of Fuzzy Control for Nonlinear Multiple Time-Delay Large-Scale Systems via Neural-Network-Based Approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38 (1), 244–251. doi: https://doi.org/10.1109/tsmcb.2006.890304
  20. Podržaj, P., Simončič, S. (2010). Resistance spot welding control based on fuzzy logic. The International Journal of Advanced Manufacturing Technology, 52 (9-12), 959–967. doi: https://doi.org/10.1007/s00170-010-2794-0
  21. Eisazadeh, H., Hamedi, M., Halvaee, A. (2010). New parametric study of nugget size in resistance spot welding process using finite element method. Materials & Design, 31 (1), 149–157. doi: https://doi.org/10.1016/j.matdes.2009.06.042

##submission.downloads##

Опубліковано

2019-09-03

Як цитувати

Hussein, H. K., Shareef, I. R., & Zayer, I. A. (2019). Prediction of spot welding parameters using fuzzy logic controlling. Eastern-European Journal of Enterprise Technologies, 5(2 (101), 57–64. https://doi.org/10.15587/1729-4061.2019.172642