Розроблення рекомендаційної системи на основі колаборативної фільтрації та Machine Learning з врахуванням особистих потреб користувача

Автор(и)

  • Vasyl Lytvyn Національний університет «Львівська політехніка» вул. С. Бандери, 12, м. Львів, Україна, 79013, Україна https://orcid.org/0000-0002-9676-0180
  • Victoria Vysotska Національний університет «Львівська політехніка» вул. С. Бандери, 12, м. Львів, Україна, 79013, Україна https://orcid.org/0000-0001-6417-3689
  • Viktor Shatskykh ПП «АНАТ» пр. Червоної Калини, 104, м. Львів, Україна, 79049, Україна https://orcid.org/0000-0002-9497-0256
  • Ihor Kohut Національний університет «Львівська політехніка» вул. С. Бандери, 12, м. Львів, Україна, 79013, Україна https://orcid.org/0000-0003-3859-1355
  • Oksana Petruchenko Національна академія сухопутних військ імені гетьмана Петра Сагайдачного вул. Героїв Майдану, 32, м. Львів, Україна, 79026, Україна https://orcid.org/0000-0003-2304-8149
  • Lyudmyla Dzyubyk Національний університет «Львівська політехніка» вул. С. Бандери, 12, м. Львів, Україна, 79013, Україна https://orcid.org/0000-0001-6942-9436
  • Vitaliy Bobrivetc Тернопільський національний економічний університет вул. Львівська, 11, м. Тернопіль, Україна, 46009, Україна https://orcid.org/0000-0003-3156-7715
  • Valentyna Panasyuk Тернопільський національний економічний університет вул. Львівська, 11, м. Тернопіль, Україна, 46009, Україна https://orcid.org/0000-0002-5133-6431
  • Svitlana Sachenko Тернопільський національний економічний університет вул. Львівська, 11, м. Тернопіль, Україна, 46009, Україна https://orcid.org/0000-0001-8225-1820
  • Myroslav Komar Тернопільський національний економічний університет вул. Львівська, 11, м. Тернопіль, Україна, 46009, Україна https://orcid.org/0000-0001-6541-0359

DOI:

https://doi.org/10.15587/1729-4061.2019.175507

Ключові слова:

комерційний контент, персоналізація, Machine Learning, SEO-технологія, метрики пошуку, електронна комерція, NLP

Анотація

Проведено дослідження рекомендаційних алгоритмів та виявлення переваг та недоліків. Вдосконалено метод формування рекомендацій на основі колаборативної фільтрації як Content-Based Filtering (CBF), Collaborative Filtering (CF) та гібридних методів Machine Learning (ML). Описано принципи проектування та функціональні вимоги до рекомендаційної системи у вигляді веб-додатка для вибору необхідного для користувача контенту на прикладі фільмів. Основні дослідження зосереджені на вирішенні проблем холодного старту та масштабованості в методі колаборативної фільтрації. Для ефективного вирішення цих проблем, використані гібридні методи навчання. Здійснена практична реалізація гібридної рекомендаційної системи (ГРС) надання релевантних рекомендацій контенту на прикладі фільмів з врахуванням особистих потреб користувача на основі розробленого гібридного методу. Удосконалено алгоритм формування рекомендацій контенту на основі колаборативної фільтрації та Machine Learning для спільної фільтрації показників подібності між користувачами або між товарами. Гібридний алгоритм приймає вхідну інформацію у різному вигляді, нормалізує її та формує відповідні рекомендації на основі комбінації методів CF та CBF. Machine Learning здатне визначати чинники, що впливають на підбір релевантних фільмів, що сприяє поліпшенню надання рекомендацій конкретному користувачу. Для вирішення цих завдань пропонується новий удосконалений метод, на відміну від наявних систем рекомендацій, в основі якого лежать гібридні методи та Machine Learning. Дані для Machine Learning розробленої ГРС взято із MovieLens. Проаналізовано методи формування рекомендацій користувачеві, проведений огляд наявних рекомендаційних систем. Експериментальні результати показують, що показники роботи запропонованої ГРС на основі технології CF+CBF+ML кращі, ніж у двох одиничних моделей, CF та CBF, та їх комбінацій як CF+CBF, CF+ML та CBF+ML. ГРС рекомендується використовувати для збору даних про вподобання людей у виборі товару та надання релевантних рекомендацій

Біографії авторів

Vasyl Lytvyn, Національний університет «Львівська політехніка» вул. С. Бандери, 12, м. Львів, Україна, 79013

Доктор технічних наук, професор

Кафедра інформаційних систем та мереж

Victoria Vysotska, Національний університет «Львівська політехніка» вул. С. Бандери, 12, м. Львів, Україна, 79013

Кандидат технічних наук, доцент

Кафедра інформаційних систем та мереж

Viktor Shatskykh, ПП «АНАТ» пр. Червоної Калини, 104, м. Львів, Україна, 79049

Програміст

Ihor Kohut, Національний університет «Львівська політехніка» вул. С. Бандери, 12, м. Львів, Україна, 79013

Кандидат фізико-математичних наук, доцент

Кафедра обчислювальної математики та програмування

Oksana Petruchenko, Національна академія сухопутних військ імені гетьмана Петра Сагайдачного вул. Героїв Майдану, 32, м. Львів, Україна, 79026

Кандидат технічних наук

Кафедра інженерної механіки (озброєння та техніки інженерних військ)

Lyudmyla Dzyubyk, Національний університет «Львівська політехніка» вул. С. Бандери, 12, м. Львів, Україна, 79013

Кандидат технічних наук

Кафедра технічної механіки та динаміки машин

Vitaliy Bobrivetc, Тернопільський національний економічний університет вул. Львівська, 11, м. Тернопіль, Україна, 46009

Викладач

Кафедра економічної експертизи та аудиту бізнесу

Valentyna Panasyuk, Тернопільський національний економічний університет вул. Львівська, 11, м. Тернопіль, Україна, 46009

Кандидат економічних наук, доцент

Кафедра обліку і оподаткування підприємницької діяльності

Svitlana Sachenko, Тернопільський національний економічний університет вул. Львівська, 11, м. Тернопіль, Україна, 46009

Кандидат економічних наук

Кафедра економічної експертизи та аудиту бізнесу

Myroslav Komar, Тернопільський національний економічний університет вул. Львівська, 11, м. Тернопіль, Україна, 46009

Кандидат технічних наук

Кафедра інформаційно-обчислювальних систем і управління

Посилання

  1. Melville, P., Mooney, R., Nagarajan, R. (2016). Content-Boosted Collaborative Filtering for Improved Recommendations. National Conference on Artificial Intelligence: «AAAI-2002», 187–192.
  2. Lytvyn, V., Vysotska, V., Demchuk, A., Demkiv, I., Ukhanska, O., Hladun, V. et. al. (2019). Design of the architecture of an intelligent system for distributing commercial content in the internet space based on SEO-technologies, neural networks, and Machine Learning. Eastern-European Journal of Enterprise Technologies, 2 (2 (98)), 15–34. doi: https://doi.org/10.15587/1729-4061.2019.164441
  3. Jones, M. T. (2013). Recommender systems, Part 1. Introduction to approaches and algorithms. Available at: https://www.ibm.com/developerworks/opensource/library/os-recommender1
  4. Su, X., Khoshgoftaar, T. M. (2009). A Survey of Collaborative Filtering Techniques. Advances in Artificial Intelligence, 2009, 1–19. doi: https://doi.org/10.1155/2009/421425
  5. Burov, Y., Vysotska, V., Kravets, P. (2019). Ontological approach to plot analysis and modeling. Proceedings of the 3rd International Conference on Computational Linguistics and Intelligent Systems (COLINS-2019). Volume I: Main Conference, 2362, 22–31.
  6. Sarwar, B., Karypis, G., Konstan, J., Reidl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the Tenth International Conference on World Wide Web - WWW ’01. doi: https://doi.org/10.1145/371920.372071
  7. Schafer, J. B., Konstan, J., Riedi, J. (1999). Recommender systems in e-commerce. Proceedings of the 1st ACM Conference on Electronic Commerce - EC ’99. doi: https://doi.org/10.1145/336992.337035
  8. Gope, J., Jain, S. K. (2017). A survey on solving cold start problem in recommender systems. 2017 International Conference on Computing, Communication and Automation (ICCCA). doi: https://doi.org/10.1109/ccaa.2017.8229786
  9. Ge, M., Delgado-Battenfeld, C., Jannach, D. (2010). Beyond accuracy: Evaluating recommender systems by coverage and serendipity. Proceedings of the fourth ACM conference on Recommender systems - RecSys '10, 257–260. doi: https://doi.org/10.1145/1864708.1864761
  10. Bobadilla, J., Ortega, F., Hernando, A., Bernal, J. (2012). A collaborative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems, 26, 225–238. doi: https://doi.org/10.1016/j.knosys.2011.07.021
  11. Nambiar, R., Bhardwaj, R., Sethi, A., Vargheese, R. (2013). A look at challenges and opportunities of Big Data analytics in healthcare. 2013 IEEE International Conference on Big Data. doi: https://doi.org/10.1109/bigdata.2013.6691753
  12. Calero Valdez, A., Ziefle, M., Verbert, K. (2016). HCI for recommender systems: The past, the present and the future. RecSys '16 Proceedings of the 10th ACM Conference on Recommender System, 123–126. doi: https://doi.org/10.1145/2959100.2959158
  13. Kotsiantis, S. B., Zaharakis, I., Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Frontiers in Artificial Intelligence and Applications, Volume 160: Emerging Artificial Intelligence Applications in Computer Engineering, 3–24.
  14. Recommended For You FAQ. Available at: https://help.imdb.com/article/imdb/discover-watch/recommended-for-you-faq/GPZ2RSPB3CPVL86Z/
  15. Netflix Prize. Available at: https://www.netflixprize.com/
  16. About Rotten Tomatoes. Available at: https://www.rottentomatoes.com/about
  17. Lytvyn, V., Vysotska, V., Rzheuskyi, A. (2019). Technology for the Psychological Portraits Formation of Social Networks Users for the IT Specialists Recruitment Based on Big Five, NLP and Big Data Analysis. Proceedings of the 1st International Workshop on Control, Optimisation and Analytical Processing of Social Networks (COAPSN-2019), 2392, 147–171.
  18. Lytvyn, V., Vysotska, V., Rusyn, B., Pohreliuk, L., Berezin, P., Naum, O. (2019). Textual Content Categorizing Technology Development Based on Ontology. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 234–254.
  19. Lytvyn, V., Kuchkovskiy, V., Vysotska, V., Markiv, O., Pabyrivskyy, V. (2018). Architecture of System for Content Integration and Formation Based on Cryptographic Consumer Needs. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526669
  20. Rubens, N., Elahi, M., Sugiyama, M., Kaplan, D. (2015). Active Learning in Recommender Systems. Recommender Systems Handbook, 809–846. doi: https://doi.org/10.1007/978-1-4899-7637-6_24
  21. Ms. Ashwini A. Chirde, Ms. Urmila K. (2015). Combination of a Cluster-Based and Content-Based Collaborative Filtering Approach for Recommender System. International Journal on Recent and Innovation Trends in Computing and Communication, 3 (7), 4770–4774.
  22. Harper, F. M., Konstan, J. A. (2015). The MovieLens Datasets. ACM Transactions on Interactive Intelligent Systems, 5 (4), 1–19. doi: https://doi.org/10.1145/2827872
  23. Grolemund, G. (2015). Hands-On Programming with R: Write Your Own Functions and Simulations. Sebastopol, United States.
  24. McLeod, D., Chen, A.-Y. (2009). Collaborative Filtering for Information Recommendation Systems. Research Reports.
  25. Ricci, F., Rokach, L., Shapira, B. (Eds.) (2015). Recommender Systems Handbook. Springer. doi: https://doi.org/10.1007/978-1-4899-7637-6
  26. Linden, G., Smith, B., York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7 (1), 76–80. doi: https://doi.org/10.1109/mic.2003.1167344
  27. The Comprehensive R Archive Network. Available at: https://cran.r-project.org
  28. RStudio. Available at: https://www.rstudio.com/products
  29. Chapter 2 Getting Started. Available at: https://docs.rstudio.com/shinyapps.io/getting-started.html
  30. MovieLens Latest Datasets. Available at: https://grouplens.org/datasets/movielens/latest
  31. Sitecore Documentation: Access all the latest Sitecore documentation. Available at: https://doc.sitecore.com
  32. Nouh, R., Lee, H.-H., Lee, W.-J., Lee, J.-D. (2019). A Smart Recommender Based on Hybrid Learning Methods for Personal Well-Being Services. Sensors, 19 (2), 431. doi: https://doi.org/10.3390/s19020431
  33. Mobasher, B. (2007). Data Mining for Web Personalization. Lecture Notes in Computer Science, 90–135. doi: https://doi.org/10.1007/978-3-540-72079-9_3
  34. Berko, A., Alieksieiev, V. (2018). A Method to Solve Uncertainty Problem for Big Data Sources. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478460
  35. Xu, G., Zhang, Y., Li, L. (2010). Web Content Mining. Web Mining and Social Networking, 71–87. doi: https://doi.org/10.1007/978-1-4419-7735-9_4
  36. Lytvyn, V., Vysotska, V., Pukach, P., Nytrebych, Z., Demkiv, I., Senyk, A. et. al. (2018). Analysis of the developed quantitative method for automatic attribution of scientific and technical text content written in Ukrainian. Eastern-European Journal of Enterprise Technologies, 6 (2 (96)), 19–31. doi: https://doi.org/10.15587/1729-4061.2018.149596
  37. Gozhyj, A., Kalinina, I., Vysotska, V., Gozhyj, V. (2018). The Method of Web-Resources Management Under Conditions of Uncertainty Based on Fuzzy Logic. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526761
  38. Lytvyn, V., Vysotska, V., Dosyn, D., Burov, Y. (2018). Method for ontology content and structure optimization, provided by a weighted conceptual graph. Webology, 15 (2), 66–85.
  39. Khomytska, I., Teslyuk, V. (2016). Specifics of phonostatistical structure of the scientific style in English style system. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589887
  40. Khomytska, I., Teslyuk, V. (2016). The Method of Statistical Analysis of the Scientific, Colloquial, Belles-Lettres and Newspaper Styles on the Phonological Level. Advances in Intelligent Systems and Computing, 149–163. doi: https://doi.org/10.1007/978-3-319-45991-2_10
  41. Nytrebych, Z. M., Malanchuk, O. M., Il’kiv, V. S., Pukach, P. Ya. (2017). Homogeneous problem with two-point conditions in time for some equations of mathematical physics. Azerbaijan Journal of Mathematics, 7 (2), 180–196.
  42. Nytrebych, Z., Il’kiv, V., Pukach, P., Malanchuk, O. (2018). On nontrivial solutions of homogeneous Dirichlet problem for partial differential equations in a layer. Kragujevac Journal of Mathematics, 42 (2), 193–207. doi: https://doi.org/10.5937/kgjmath1802193n
  43. Nytrebych, Z., Malanchuk, O., Il’kiv, V., Pukach, P. (2017). On the solvability of two-point in time problem for PDE. Italian Journal of Pure and Applied Mathematics, 38, 715–726.
  44. Pukach, P. Ya., Kuzio, I. V., Nytrebych, Z. M., Ilkiv, V. S. (2017). Analytical methods for determining the effect of the dynamic process on the nonlinear flexural vibrations and the strength of compressed shaft. Naukovyi Visnyk Natsіonalnoho Hіrnychoho Unіversytetu, 5, 69–76.
  45. Pukach, P. Y., Kuzio, I. V., Nytrebych, Z. M., Il’kiv, V. S. (2018). Asymptotic method for investigating resonant regimes of nonlinear bending vibrations of elastic shaft. Scientific Bulletin of National Mining University, 1, 68–73. doi: https://doi.org/10.29202/nvngu/2018-1/9
  46. Nytrebych, Z., Ilkiv, V., Pukach, P., Malanchuk, O., Kohut, I., Senyk, A. (2019). Analytical method to study a mathematical model of wave processes under two­point time conditions. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 74–83. doi: https://doi.org/10.15587/1729-4061.2019.155148
  47. Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M., Pukach, P. (2017). On the Asymptotic Methods of the Mathematical Models of Strongly Nonlinear Physical Systems. Advances in Intelligent Systems and Computing, 421–433. doi: https://doi.org/10.1007/978-3-319-70581-1_30
  48. Lavrenyuk, S. P., Pukach, P. Y. (2007). Mixed problem for a nonlinear hyperbolic equation in a domain unbounded with respect to space variables. Ukrainian Mathematical Journal, 59 (11), 1708–1718. doi: https://doi.org/10.1007/s11253-008-0020-0
  49. Pukach, P. Y. (2016). Investigation of Bending Vibrations in Voigt–Kelvin Bars with Regard for Nonlinear Resistance Forces. Journal of Mathematical Sciences, 215 (1), 71–78. doi: https://doi.org/10.1007/s10958-016-2823-0
  50. Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M. (2017). On nonexistence of global in time solution for a mixed problem for a nonlinear evolution equation with memory generalizing the Voigt-Kelvin rheological model. Opuscula Mathematica, 37 (45), 735. doi: https://doi.org/10.7494/opmath.2017.37.5.735
  51. Pukach, P. Y. (2012). On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time. Nonlinear Oscillations, 14 (3), 369–378. doi: https://doi.org/10.1007/s11072-012-0164-6
  52. Pukach, P. Y. (2014). Qualitative Methods for the Investigation of a Mathematical Model of Nonlinear Vibrations of a Conveyer Belt. Journal of Mathematical Sciences, 198 (1), 31–38. doi: https://doi.org/10.1007/s10958-014-1770-x
  53. Bezobrazov, S., Sachenko, A., Komar, M., Rubanau, V. (2016). The Methods of Artificial Intelligence for Malicious Applications Detection in Android OS. International Journal of Computing, 15 (3), 184–190.
  54. Dunets, O., Wolff, C., Sachenko, A., Hladiy, G., Dobrotvor, I. (2017). Multi-agent system of IT project planning. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2017.8095141
  55. Lytvyn, V., Vysotska, V., Pukach, P., Nytrebych, Z., Demkiv, I., Kovalchuk, R., Huzyk, N. (2018). Development of the linguometric method for automatic identification of the author of text content based on statistical analysis of language diversity coefficients. Eastern-European Journal of Enterprise Technologies, 5 (2 (95)), 16–28. doi: https://doi.org/10.15587/1729-4061.2018.142451
  56. Vysotska, V., Lytvyn, V., Burov, Y., Berezin, P., Emmerich, M., Basto Fernandes, V. (2019). Development of Information System for Textual Content Categorizing Based on Ontology. CEUR Workshop Proceedings, 53–70.
  57. Vysotska, V., Lytvyn, V., Burov, Y., Gozhyj, A., Makara, S. (2018). The consolidated information web-resource about pharmacy networks in city. Proceedings of the 1st International Workshop on Informatics & Data-Driven Medicine (IDDM 2018), 2255, 239–255. Available at: http://ceur-ws.org/Vol-2255/paper22.pdf
  58. Rusyn, B., Vysotska, V., Pohreliuk, L. (2018). Model and Architecture for Virtual Library Information System. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526679
  59. Lytvyn, V., Vysotska, V., Dosyn, D., Lozynska, O., Oborska, O. (2018). Methods of Building Intelligent Decision Support Systems Based on Adaptive Ontology. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478500
  60. Lytvyn, V., Vysotska, V., Burov, Y., Bobyk, I., Ohirko, O. (2018). The Linguometric Approach for Co-authoring Author's Style Definition. 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). doi: https://doi.org/10.1109/idaacs-sws.2018.8525741
  61. Zdebskyi, P., Vysotska, V., Peleshchak, R., Peleshchak, I., Demchuk, A., Krylyshyn, M. (2019). An Application Development for Recognizing of View in Order to Control the Mouse Pointer. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 55–74.
  62. Veres, O., Rusyn, B., Sachenko, A., Rishnyak, I. (2018). Choosing the method of finding similar images in the reverse search system. Proceedings of the 2nd International Conference on Computational Linguistics and Intelligent Systems. Volume I: Main Conference (COLINS 2018), 2136, 99–107.
  63. Rashkevych, Y., Peleshko, D., Vynokurova, O., Izonin, I., Lotoshynska, N. (2017). Single-frame image super-resolution based on singular square matrix operator. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). doi: https://doi.org/10.1109/ukrcon.2017.8100390
  64. Vysotska, V., Lytvyn, V., Hrendus, M., Kubinska, S., Brodyak, O. (2018). Method of Textual Information Authorship Analysis Based on Stylometry. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526608
  65. Gozhyj, A., Chyrun, L., Kowalska-Styczen, A., Lozynska, O. (2018). Uniform Method of Operative Content Management in Web Systems. Proceedings of the 2nd International Conference on Computational Linguistics and Intelligent Systems. Volume I: Main Conference (COLINS 2018), 2136. P. 62–77. Available at: http://ceur-ws.org/Vol-2136/10000062.pdf
  66. Vysotska, V., Burov, Y., Lytvyn, V., Demchuk, A. (2018). Defining Author's Style for Plagiarism Detection in Academic Environment. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), 128–133. doi: https://doi.org/10.1109/dsmp.2018.8478574
  67. Chyrun, L., Vysotska, V., Kis, I., Chyrun, L. (2018). Content Analysis Method for Cut Formation of Human Psychological State. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478619
  68. Gozhyj, A., Vysotska, V., Yevseyeva, I., Kalinina, I., Gozhyj, V. (2018). Web Resources Management Method Based on Intelligent Technologies. Advances in Intelligent Systems and Computing III, 206–221. doi: https://doi.org/10.1007/978-3-030-01069-0_15
  69. Chyrun, L., Kis, I., Vysotska, V., Chyrun, L. (2018). Content Monitoring Method for Cut Formation of Person Psychological State in Social Scoring. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526624
  70. Demchuk, A., Lytvyn, V., Vysotska, V., Dilai, M. (2019). Methods and Means of Web Content Personalization for Commercial Information Products Distribution. Lecture Notes in Computational Intelligence and Decision Making, 332–347. doi: https://doi.org/10.1007/978-3-030-26474-1_24
  71. Lytvyn, V., Vysotska, V., Kuchkovskiy, V., Bobyk, І., Malanchuk, O., Ryshkovets, Y. et. al. (2019). Development of the system to integrate and generate content considering the cryptocurrent needs of users. Eastern-European Journal of Enterprise Technologies, 1 (2 (97)), 18–39. doi: https://doi.org/10.15587/1729-4061.2019.154709
  72. Vysotska, V., Fernandes, V. B., Lytvyn, V., Emmerich, M., Hrendus, M. (2018). Method for Determining Linguometric Coefficient Dynamics of Ukrainian Text Content Authorship. Advances in Intelligent Systems and Computing III, 132–151. doi: https://doi.org/10.1007/978-3-030-01069-0_10
  73. Kravets, P. (2010). The control agent with fuzzy logic. Perspective Technologies and Methods in MEMS Design, 40–41.
  74. Kravets, P. (2007). The Game Method for Orthonormal Systems Construction. 2007 9th International Conference - The Experience of Designing and Applications of CAD Systems in Microelectronics. doi: https://doi.org/10.1109/cadsm.2007.4297555
  75. Kravets, P. (2016). Game Model of Dragonfly Animat Self-Learning. Perspective Technologies and Methods in MEMS Design, 195–201.
  76. Bazylyk, O., Taradaha, P., Nadobko, O., Chyrun, L., Shestakevych, T. (2012). The results of software complex OPTAN use for modeling and optimization of standard engineering processes of printed circuit boards manufacturing. 2012 11th International Conference on "Modern Problems of Radio Engineering, Telecommunications and Computer Science" (TCSET), 107–108.
  77. Bondariev, A., Kiselychnyk, M., Nadobko, O., Nedostup, L., Chyrun, L., Shestakevych, T. (2012). The software complex development for modeling and optimizing of processes of radio-engineering equipment quality providing at the stage of manufacture. TCSET’2012, 159.
  78. Teslyuk, V., Beregovskyi, V., Denysyuk, P., Teslyuk, T., Lozynskyi, A. (2018). Development and Implementation of the Technical Accident Prevention Subsystem for the Smart Home System. International Journal of Intelligent Systems and Applications, 10 (1), 1–8. doi: https://doi.org/10.5815/ijisa.2018.01.01
  79. Basyuk, T. (2015). The main reasons of attendance falling of internet resource. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325440
  80. Chernukha, O., Bilushchak, Y. (2016). Mathematical modeling of random concentration field and its second moments in a semispace with erlangian disrtibution of layered inclusions. Task Quarterly, 20 (3), 295–334.
  81. Chyrun, L., Kowalska-Styczen, A., Burov, Y., Berko, A., Vasevych, A., Pelekh, I., Ryshkovets, Y. (2019). Heterogeneous Data with Agreed Content Aggregation System Development. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 35–54.
  82. Chyrun, L., Burov, Y., Rusyn, B., Pohreliuk, L., Oleshek, O. et. al. (2019). Web Resource Changes Monitoring System Development. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 255–273.
  83. Vysotska, V., Burov, Y., Lytvyn, V., Oleshek, O. (2019). Automated Monitoring of Changes in Web Resources. Lecture Notes in Computational Intelligence and Decision Making, 348–363. doi: https://doi.org/10.1007/978-3-030-26474-1_25
  84. Chyrun, L., Gozhyj, A., Yevseyeva, I., Dosyn, D., Tyhonov, V., Zakharchuk, M. (2019). Web Content Monitoring System Development. Proceedings of the 3rd International Conference on Computational Linguistics and Intelligent Systems (COLINS-2019). Volume I: Main Conference, 2362, 126–142.
  85. Rzheuskyi, A., Gozhyj, A., Stefanchuk, A., Oborska, O., Chyrun, L., Lozynska, O. et. al. (2019). Development of Mobile Application for Choreographic Productions Creation and Visualization. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 340–358.
  86. Lytvynenko, V., Savina, N., Krejci, J., Voronenko, M., Yakobchuk, M., Kryvoruchko, O. (2019). Bayesian Networks' Development Based on Noisy-MAX Nodes for Modeling Investment Processes in Transport. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 1–10.
  87. Lytvynenko, V., Lurie, I., Krejci, J., Voronenko, M., Savina, N., Taif, M. A. (2019). Two Step Density-Based Object-Inductive Clustering Algorithm. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 117–135.

##submission.downloads##

Опубліковано

2019-08-09

Як цитувати

Lytvyn, V., Vysotska, V., Shatskykh, V., Kohut, I., Petruchenko, O., Dzyubyk, L., Bobrivetc, V., Panasyuk, V., Sachenko, S., & Komar, M. (2019). Розроблення рекомендаційної системи на основі колаборативної фільтрації та Machine Learning з врахуванням особистих потреб користувача. Eastern-European Journal of Enterprise Technologies, 4(2 (100), 6–28. https://doi.org/10.15587/1729-4061.2019.175507