Розробка методики вибору оптимальних параметрів електромеханічного амортизатору для вагону метрополітену

Автор(и)

  • Borys Liubarskyi Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-2985-7345
  • Natalia Lukashova Харківський національний університет міського господарства імені О. М. Бекетова вул. Маршала Бажанова, 17, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-5556-241X
  • Oleksandr Petrenko Харківський національний університет міського господарства імені О. М. Бекетова вул. Маршала Бажанова, 17, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0003-4027-4818
  • Tetyana Pavlenko Харківський національний університет міського господарства імені О. М. Бекетова вул. Маршала Бажанова, 17, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-2356-4066
  • Dmytro Iakunin Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-3995-3162
  • Sergiy Yatsko Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050, Україна https://orcid.org/0000-0002-5977-8613
  • Yaroslav Vashchenko Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050, Україна https://orcid.org/0000-0001-5030-4107

DOI:

https://doi.org/10.15587/1729-4061.2019.176304

Ключові слова:

електромеханічний амортизатор, метровагон, магніт, згортка параметрів, генетичний алгоритм, метод Нелдера-Міда

Анотація

Для запропонованої конструкції електромеханічного амортизатору розроблено методика визначення основних розрахункових параметрів. Методика основана на спрощеній математичній моделі по визначенню електромагнітної та електрорушійної сили електромеханічного амортизатору. Особливістю моделі є урахування режимів роботи постійного магніту на основі розрахунку магнітного кола. Створення модель дозволяє проводити приблизний розрахунок режимів роботи амортизатора та може бути використана у вирішенні задачі оптимізації параметрів електроамортизатору. Проведено перевірка адекватності розробленої спрощеної математичної моделі шляхом порівняння результатів розрахунку механічної характеристики амортизатора за спрощеною методикою та методом кінцевих елементів в аксиально-симетричній постановці задачі. Отримано наявне добре співпадіння результатів розрахунків за спрощеною методикою та шляхом моделювання магнітного поля за методом кінцевих елементів. Визначенні геометричні співвідношення між елементами конструкції, які забезпечують оптимальне рівномірне магнітне навантаження в елементах магнітопроводу. Проведена постановка задачі умовної двокритеріальної оптимізації параметрів електромеханічного амортизатору. Обрані обмеження, що поділено на три наступні категорії. Обмеження за розмагніченням постійного магніту, що дозволяють зберегти працездатність постійного магніту. Обмеження за щільністю струму, яке забезпечує теплові режими роботи амортизатору. Компоновачні обмеження та обмеження на параметри задачі оптимізації, що забезпечують розміщення конструкції у ходовій частині візка. Запропоновано у якості критеріїв обрати приведений об’єм амортизатору, що обумовлює затрати на створення амортизатору та його ККД, який обумовлює рекуперовану енергію коливань. Проведено згортку параметрів до єдиної цільової функції затрат та обрані вагові коефіцієнти. У якості метода оптимізації обрано комбінований метод, що включає в себе генетичний алгоритм, на попередньому етапі пошуку. На завершальному етапі оптимізаційної процедури уточнення оптимуму здійснюється методом Нелдера-Міда. За результатами вирішення задачі оптимізації параметрів амортизатору визначені оптимальні геометричні розміри та кількість витків обмотки електромеханічного амортизатору

Біографії авторів

Borys Liubarskyi, Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002

Доктор технічних наук, професор

Кафедра електричного транспорту та тепловозобудування

Natalia Lukashova, Харківський національний університет міського господарства імені О. М. Бекетова вул. Маршала Бажанова, 17, м. Харків, Україна, 61002

Асистент

Кафедра електричного транспорту

Oleksandr Petrenko, Харківський національний університет міського господарства імені О. М. Бекетова вул. Маршала Бажанова, 17, м. Харків, Україна, 61002

Доктор технічних наук, доцент

Кафедра електричного транспорту

Tetyana Pavlenko, Харківський національний університет міського господарства імені О. М. Бекетова вул. Маршала Бажанова, 17, м. Харків, Україна, 61002

Доктор технических наук, професор

Кафедра електричного транспорту

Dmytro Iakunin, Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002

Кандидат технічних наук, доцент

Кафедра електричного транспорту та тепловозобудування

Sergiy Yatsko, Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050

Кандидат технічних наук, доцент

Кафедра електроенергетики, електротехніки та електромеханіки

Yaroslav Vashchenko, Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050

Кандидат технічних наук, старший викладач

Кафедра електроенергетики, електротехніки та електромеханіки

Посилання

  1. Serdobintsev, E. V., Ye Win Han (2013). Vertical Oscillations of the Metro Wagon with Pneumatic Suspension. Mir transporta, 2, 78–84.
  2. Golovanov, L. (2011). Bose moy. AvtoRevyu, 12 (475), 53–55.
  3. Bose suspension system-white paper. Bose Company. Available at: http://www.bose.com/
  4. Lei, Z., Xiudong, T., Sheng, Z. P. (2011). Pаt. No. WO 2012/015488 USA. Electricity generating shock absorbers. F16F15/03, F16F6/00. No. US2011/024699; declareted: 02.12.2011; published: 02.02.2012.
  5. Zuo, L., Scully, B., Shestani, J., Zhou, Y. (2010). Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Materials and Structures, 19 (4), 045003. doi: https://doi.org/10.1088/0964-1726/19/4/045003
  6. Choi, S.-B., Seong, M.-S., Kim, K.-S. (2009). Vibration control of an electrorheological fluid-based suspension system with an energy regenerative mechanism. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223 (4), 459–469. doi: https://doi.org/10.1243/09544070jauto968
  7. Vedeneev, S. A. (1990). Pat. No. 2013217 RF. Transportnoe sredstvo. MPK B60G 13/14. No. 4844202/11; declareted: 26.06.1990; published: 10.10.2000, Bul. No. 28.
  8. Khudolii, O. I., Serhienko, O. I., Serhienko, A. M. (2009). Pat. No. 93154 UA. Device for recuperation of energy of vibrations of transportation mean. MPK F03G7/08, B60K 25/00. No. a200912230; declareted: 27.11.2009; published: 10.01.2011, Bul. No. 1.
  9. Sergienko, A. N., Lyubarskiy, B. G., Medvedev, N. G., Sergienko, N. E. (2015). Simulation results EMF-absorber when driving over bumps. Vestnik Nats. tehn. Un-ta "KhPI": sb. nauch. tr. Temat. Vyp.: Avtomobile- i traktorostroenie, 10 (1119), 157–164.
  10. Serhienko, A., Liubarskyi, B., Samorodov, V., Serhienko, N. (2012). Electromechanical converters construction analysis and electric shock-absorber scheme for vehicle un-sprung masses selection. Avtomobil'niy transport, 31, 18–25.
  11. Omel'yanenko, V. I. (1994). Lineynye dvigateli postoyannogo toka s tiristornym kommutatorom. Kharkiv: Osnova, 76.
  12. Lyubarskiy, B. G. (2014). Optimizatsiya rezhimov raboty tyagovogo asinhronnogo privoda. Elektrika, 6, 5–10.
  13. Serdobintsev, E., Zvantsev, P., Ye Vin Han (2014). Vybor parametrov metrovagona s pnevmoressorami. Mir transporta, 1, 34–41.
  14. Lukashova, N., Pavlenko, T., Liubarskyi, B., Petrenko, O. (2018). Analysis of constructions of resports lingings of rail city electric mobile composition. Systemy upravlinnia, navihatsii ta zviazku. Zbirnyk naukovykh prats, 5 (51), 65–68. doi: https://doi.org/10.26906/sunz.2018.5.065
  15. Telezhka mod. 68-7054 dlya vagonov metropolitena. Available at: https://kvsz-ua.all.biz/telezhka-mod-68-7054-dlya-vagonov-metropolitena-g16893290
  16. Meeker, D. (2013). Finite Element Method Magnetics: MagneticsTutorial. Available at: http://www.femm.info/wiki/MagneticsTutorial
  17. Riabov, I., Liubarskyi, B. (2018). Determination of Phase Flux-Linkage of Flux Switching Motor with Spatial Magnetic System. 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). doi: https://doi.org/10.1109/icieam.2018.8728773
  18. Yeritsyan, B., Liubarskyi, B., Iakunin, D. (2016). Simulation of combined body tilt system of high-speed railway rolling stock. Eastern-European Journal of Enterprise Technologies, 2 (9 (80)), 4–17. doi: https://doi.org/10.15587/1729-4061.2016.66782
  19. Lubarskiy, B. G., Severin, V. P., Ryabov, E. S., Emeljanov, V. L. (2010). Synthesis of an axial-flux traction jet induction motor for high-speed rolling stock. Elektrotekhnika i elektromekhanika, 6, 28–30.
  20. Severin, B. P. (2009). Vektornaya optimizatsiya sistem avtomaticheskogo upravleniya geneticheskimi algoritmami. Tehnicheskaya ehlektrodinamika. Silovaya ehlektronika i ehnergoehffektivnost', 80–85.
  21. Buryakovskiy, S., Masliy, Ar., Masliy, An. (2015). Calculation and optimization of the geometric dimensions of linear electric drives of the sleeper type turnouts. Problemy enerhoresursosberezhennia v elektrotekhnichnykh systemakh, 1 (3), 65–67.
  22. Yeritsyan, B. Ch., Lyubarskiy, B. G., Iakunin, D. I. (2015). The task of analyzing geometric dimension optimization of a linear engine of a car body tilt of high-speed electric rolling stock. Informatsiino-keruiuchi systemy na zaliznychnomu transporti, 5, 7–11.
  23. Kakandikar, G., Nandedkar, V. (2018). Springback optimization in automotive Shock Absorber Cup with Genetic Algorithm. Manufacturing Review, 5, 1. doi: https://doi.org/10.1051/mfreview/2017013
  24. Maemori, K., Tanigawa, N., Shi, F.-H. (2004). Optimization of a Semi-Active Shock Absorber Using a Genetic Algorithm. Volume 1: 30th Design Automation Conference. doi: https://doi.org/10.1115/detc2004-57115

##submission.downloads##

Опубліковано

2019-08-20

Як цитувати

Liubarskyi, B., Lukashova, N., Petrenko, O., Pavlenko, T., Iakunin, D., Yatsko, S., & Vashchenko, Y. (2019). Розробка методики вибору оптимальних параметрів електромеханічного амортизатору для вагону метрополітену. Eastern-European Journal of Enterprise Technologies, 4(5 (100), 16–25. https://doi.org/10.15587/1729-4061.2019.176304

Номер

Розділ

Прикладна фізика