Розробка рішень з регулювання власних деформацій лужних цементів

Автор(и)

  • Pavlo Krivenko Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0001-7697-2437
  • Volodymyr Gots Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0001-7702-1609
  • Oleh Petropavlovskyi Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0002-3381-1411
  • Igor Rudenko Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0001-5716-8259
  • Oleksandr Konstantynovskyi Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0002-7936-5699
  • Artem Kovalchuk Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0002-3532-4510

DOI:

https://doi.org/10.15587/1729-4061.2019.181150

Ключові слова:

лужний цемент, сіль-електроліт, комплексна органо-мінеральна добавка, структуроутворення, власні деформації, усадка

Анотація

Проаналізовано сутність проблеми власних деформацій лужних цементів (ЛЦ), ускладнення якої пов’язано з підвищеним вмістом гелеподібних гідратних новоутворень. Як приклади розглянуто типи цементів діаметрально протилежні за композиційною будовою і відповідно за вмістом гелеподібних фаз при гідратації – лужний портландцемент (ЛПЦ) і шлаколужний цемент (ШЛЦ). Запропоновано підходи до формування ефективної структури штучного каменя, протидіючою деформаціям усадки, шляхом втручання в структуроутворення при використанні комплексів мінеральних і органічних сполук. Такі сполуки в складі комплексних органо-мінеральних добавок сумісно впливають на інтенсифікацію кристалізаційних процесів, формування ефективної порової структури та морфологію гідратних фаз при зменшенні вмісту води в штучному камені. В якості інгредієнтів запропонованих комплексних добавок-модифікаторів розглянуто солі-електроліти різного аніонного типу та аніоноактивні поверхнево-активні речовини.

Виявлено, що для модифікації ЛПЦ найбільш ефективною є система «сіль-електроліт – поверхнево-активна речовина». Показано, що модифікація ЛПЦ комплексною добавкою цієї системи на основі NaNO3 забезпечує зменшення усадки з 0,406 до 0,017 мм/м. Натомість використання Na2SO4 забезпечує цьому типу лужного цементу здатність до розширення в межах 0,062 мм/м. Показано, що ефект компенсованої усадки модифікованого ЛПЦ пов'язаний з більшою кристалізацією низькоосновних гідросилікатів (CSH(В)) і гідроалюмінатів кальцію (CaO∙Al2O3∙10H2O). Додатковий ефект пов'язаний з утворенням сульфатвміщуючого натрієво-кальцієвого гідроалюмінату (для системи на основі Na2SO4) та кристалічного гідронітроалюмінату кальцію (для системи на основі NaNO3) з відповідним напруженням мікроструктури.

В розвиток для модифікації ШЛЦ запропоновано комплексну добавку системи «портландцементний клінкер – сіль-електроліт – поверхнево-активна речовина», яка забезпечує зменшення усадки з 0,984 мм/м до 0,683 мм/м. Мінімізація усадки модифікованого ШЛЦ пояснено формуванням поряд з низькоосновними гідросилікатами кальцію гідроалюмосилікату натрію типу гмеленіту ((Na2Сa)∙Al2Si4∙O12∙6H2O) з підвищеним ступенем закристалізованості. При цьому відмічено, що структура цементного каменя характеризується підвищеною щільністю, однорідністю і монолітністю гідратних новоутворень

Біографії авторів

Pavlo Krivenko, Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Доктор технічних наук, професор

Науково-дослідний інститут в’яжучих речовин і матеріалів

Volodymyr Gots, Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Доктор технічних наук, професор

Кафедра технології будівельних конструкцій і виробів

Oleh Petropavlovskyi, Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Кандидат технічних наук, старший науковий співробітник

Науково-дослідний інститут в’яжучих речовин і матеріалів

Igor Rudenko, Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Кандидат технічних наук, старший науковий співробітник

Науково-дослідний інститут в’яжучих речовин і матеріалів

Oleksandr Konstantynovskyi, Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Кандидат технічних наук, доцент

Кафедра технології будівельних конструкцій і виробів

Artem Kovalchuk, Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Аспірант

Кафедра технології будівельних конструкцій і виробів

Посилання

  1. Kropyvnytska, T., Rucinska, T., Ivashchyshyn, H., Kotiv, R. (2019). Development of Eco-Efficient Composite Cements with High Early Strength. Lecture Notes in Civil Engineering, 211–218. doi: https://doi.org/10.1007/978-3-030-27011-7_27
  2. Markiv, T., Sobol, K., Franus, M., Franus, W. (2016). Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering, 16 (4), 554–562. doi: https://doi.org/10.1016/j.acme.2016.03.013
  3. Sanytsky, M., Kropyvnytska, T., Kruts, T., Horpynko, O., Geviuk, I. (2018). Design of Rapid Hardening Quaternary Zeolite-Containing Portland-Composite Cements. Key Engineering Materials, 761, 193–196. doi: https://doi.org/10.4028/www.scientific.net/kem.761.193
  4. Sanytsky, M., Kropyvnytska, T., Kotiv, R. (2014). Modified Plasters for Restoration and Finishing Works. Advanced Materials Research, 923, 42–47. doi: https://doi.org/10.4028/www.scientific.net/amr.923.42
  5. Krivenko, P., Sanytsky, M., Kropyvnytska, T. (2018). Alkali-Sulfate Activated Blended Portland Cements. Solid State Phenomena, 276, 9–14. doi: https://doi.org/10.4028/www.scientific.net/ssp.276.9
  6. Krivenko, P., Petropavlovskyi, O., Kovalchuk, O., Lapovska, S., Pasko, A. (2018). Design of the composition of alkali activated portland cement using mineral additives of technogenic origin. Eastern-European Journal of Enterprise Technologies, 4 (6 (94)), 6–15. doi: https://doi.org/10.15587/1729-4061.2018.140324
  7. Kochetov, G., Prikhna, T., Kovalchuk, O., Samchenko, D. (2018). Research of the treatment of depleted nickel­plating electrolytes by the ferritization method. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 52–60. doi: https://doi.org/10.15587/1729-4061.2018.133797
  8. Fernández-Jiménez, A., Pastor, J. Y., Martín, A., Palomo, A. (2010). High-Temperature Resistance in Alkali-Activated Cement. Journal of the American Ceramic Society, 93 (10), 3411–3417. doi: https://doi.org/10.1111/j.1551-2916.2010.03887.x
  9. Xie, Y., Lin, X., Ji, T., Liang, Y., Pan, W. (2019). Comparison of corrosion resistance mechanism between ordinary Portland concrete and alkali-activated concrete subjected to biogenic sulfuric acid attack. Construction and Building Materials, 228, 117071. doi: https://doi.org/10.1016/j.conbuildmat.2019.117071
  10. Krivenko, P., Petropavlovskyi, O., Kovalchuk, O. (2018). A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali­activated slag cement and concrete. Eastern-European Journal of Enterprise Technologies, 1 (6 (91)), 33–39. doi: https://doi.org/10.15587/1729-4061.2018.119624
  11. Krivenko, P. (2017). Why Alkaline Activation – 60 Years of the Theory and Practice of Alkali-Activated Materials. Journal of Ceramic Science and Technology, 8 (3), 323–334. doi: http://doi.org/10.4416/JCST2017-00042
  12. DSTU B V.2.7-181:2009. Tsementy luzhni. Tekhnichni umovy (2009). Kyiv, 10.
  13. Kryvenko, P., Runova, R., Rudenko, I., Skorik, V., Omelchuk, V. (2017). Analysis of plasticizer effectiveness during alkaline cement structure formation. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 35–41. doi: https://doi.org/10.15587/1729-4061.2017.106803
  14. Yuan, X., Chen, W., Lu, Z., Chen, H. (2014). Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Construction and Building Materials, 66, 422–428. doi: https://doi.org/10.1016/j.conbuildmat.2014.05.085
  15. Fridrichová, M., Dvořák, K., Gazdič, D., Mokrá, J., Kulísek, K. (2016). Thermodynamic Stability of Ettringite Formed by Hydration of Ye’elimite Clinker. Advances in Materials Science and Engineering, 2016, 1–7. doi: https://doi.org/10.1155/2016/9280131
  16. Chen, K., Yang, C.-H., Yu, Z.-D. et. al. (2011). Effect of admixture on drying shrinkage of alkali-activated slag mortar. Chongqing Daxue Xuebao/Journal of Chongqing University, 34, 38–40.
  17. Bílek Jr., V., Pařízek, L., Kosár, P., Kratochvíl, J., Kalina, L. (2016). Strength and Porosity of Materials on the Basis of Blast Furnace Slag Activated by Liquid Sodium Silicate. Materials Science Forum, 851, 45–50. doi: https://doi.org/10.4028/www.scientific.net/msf.851.45
  18. Samchenko, S. V. (2016). Formirovanie i genezis struktury tsementnogo kamnya. Moscow: NIU MGSU, 284.
  19. Omelchuk, V., Ye, G., Runova, R., Rudenko, I. I. (2018). Shrinkage Behavior of Alkali-Activated Slag Cement Pastes. Key Engineering Materials, 761, 45–48. doi: https://doi.org/10.4028/www.scientific.net/kem.761.45
  20. Mora-Ruacho, J., Gettu, R., Aguado, A. (2009). Influence of shrinkage-reducing admixtures on the reduction of plastic shrinkage cracking in concrete. Cement and Concrete Research, 39 (3), 141–146. doi: https://doi.org/10.1016/j.cemconres.2008.11.011
  21. Runova, R., Gots, V., Rudenko, I., Konstantynovskyi, O., Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences, 230, 03016. doi: https://doi.org/10.1051/matecconf/201823003016
  22. Rudenko, I. I., Konstantynovskyi, O. P., Kovalchuk, A. V., Nikolainko, M. V., Obremsky, D. V. (2018). Efficiency of Redispersible Polymer Powders in Mortars for Anchoring Application Based on Alkali Activated Portland Cements. Key Engineering Materials, 761, 27–30. doi: https://doi.org/10.4028/www.scientific.net/kem.761.27
  23. Palacios, M., Houst, Y. F., Bowen, P., Puertas, F. (2009). Adsorption of superplasticizer admixtures on alkali-activated slag pastes. Cement and Concrete Research, 39 (8), 670–677. doi: https://doi.org/10.1016/j.cemconres.2009.05.005
  24. Najimi, M., Ghafoori, N., Sharbaf, M. (2019). Alkali-Activated Natural Pozzolan/Slag Binders: Limitation and Remediation. Magazine of Concrete Research, 1–48. doi: https://doi.org/10.1680/jmacr.18.00184
  25. Bílek, V., Kalina, L., Novotný, R., Tkacz, J., Pařízek, L. (2016). Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems. Materials, 9 (6), 462. doi: https://doi.org/10.3390/ma9060462
  26. Bayliss, P., Kolitsch, U., Nickel, E. H., Pring, A. (2010). Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74(5), 919–927. doi: https://doi.org/10.1180/minmag.2010.074.5.919
  27. Plugin, A. A., Runova, R. F. (2018). Bonding Calcium Chloride and Calcium Nitrate into Stable Hydration Portland Cement Products: Stability Conditions of Calcium Hydrochloraluminates and Calcium Hydronitroaluminates. International Journal of Engineering Research in Africa, 36, 69–73. doi: https://doi.org/10.4028/www.scientific.net/jera.36.69

##submission.downloads##

Опубліковано

2019-10-18

Як цитувати

Krivenko, P., Gots, V., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O., & Kovalchuk, A. (2019). Розробка рішень з регулювання власних деформацій лужних цементів. Eastern-European Journal of Enterprise Technologies, 5(6 (101), 24–32. https://doi.org/10.15587/1729-4061.2019.181150

Номер

Розділ

Технології органічних та неорганічних речовин