Development of the method operative calculation the recurrent diagrams for non-regular measurements
DOI:
https://doi.org/10.15587/1729-4061.2019.181516Ключові слова:
рекурентна діаграма, складні динамічні системи, нерегулярні вимірювання, газові забруднення атмосфериАнотація
Методи обчислення рекурентних діаграм на основі вимірювання динаміки вектора станів у фазовому просторі на даний час широко використовуються для візуального і кількісного аналізу поведінки складних динамічних систем різної сфери. Однак ці методи, володіючи високими потенційними можливостями, не можуть безпосередньо використовуватися для оперативного обчислення рекурентних діаграм в реальному темпі вимірювань вектора станів з урахуванням нерегулярності вимірювань. Однією з причин цього є відсутність методу, здатного оперативно і досить достовірно відображати рекурентні стани реальних систем в рекурентних діаграмах при нерегулярних вимірах вектора станів. Пропонується метод оперативного обчислення рекурентних діаграм при нерегулярних вимірах, заснований на науковому аналізі причин низької достовірності і неможливості оперативного обчислення рекурентних діаграм, а також пошуку та обґрунтуванні конструктивних методів їх усунення. До таких методів належать: поточне обчислення рекурентних діаграм; удосконалення фазового простору за рахунок введення операції скалярного добутку для векторів станів; адаптація порога рекурентності до результатів вимірювань. Процес поточного обчислення рекурентних діаграм заснований на використанні тільки поточних і попередніх вимірювань вектора станів системи. У пропонованому вдосконаленому фазовому просторі вдається узгодити два ключові чинники низької достовірності відображення рекурентних станів в діаграмах, пов'язаних з невизначеністю норми і порога рекурентності. Це дозволило запропонувати метод адаптації порога для конічних областей рекурентності. При цьому для забезпечення достовірного відображення рекурентних станів в діаграмах в умовах нерегулярних вимірів вектора станів запропоновано використовувати при обчисленні два адаптивних порога з різними кутовими параметрами конусів рекурентності. Працездатність пропонованого оперативного методу обчислення рекурентних діаграм підтверджена і проілюстрована на прикладі нерегулярних вимірювань реальної динаміки вектора станів небезпечної забрудненості міської атмосфери
Посилання
- Webber, C. L., Marwan, N. (Eds.) (2015). Recurrence Quantification Analysis. Understanding Complex Systems. Springer. doi: https://doi.org/10.1007/978-3-319-07155-8
- Marwan, N., Webber, C. L., Macau, E. E. N., Viana, R. L. (2018). Introduction to focus issue: Recurrence quantification analysis for understanding complex systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (8), 085601. doi: https://doi.org/10.1063/1.5050929
- Oya, S., Aihara, K., Hirata, Y. (2014). Forecasting abrupt changes in foreign exchange markets: method using dynamical network marker. New Journal of Physics, 16 (11), 115015. doi: https://doi.org/10.1088/1367-2630/16/11/115015
- Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21 (04), 1003–1017. doi: https://doi.org/10.1142/s0218127411029008
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
- Takens, F. (1981). Detecting strange attractors in turbulence. Lecture Notes in Mathematics, 366–381. doi: https://doi.org/10.1007/bfb0091924
- Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
- Adeniji, A. E., Olusola, O. I., Njah, A. N. (2018). Comparative study of chaotic features in hourly wind speed using recurrence quantification analysis. AIP Advances, 8 (2), 025102. doi: https://doi.org/10.1063/1.4998674
- Wendi, D., Marwan, N., Merz, B. (2018). In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots. International Journal of Bifurcation and Chaos, 28 (01), 1850007. doi: https://doi.org/10.1142/s0218127418500074
- Donner, R. V., Balasis, G., Stolbova, V., Georgiou, M., Wiedermann, M., Kurths, J. (2019). Recurrence‐Based Quantification of Dynamical Complexity in the Earth's Magnetosphere at Geospace Storm Timescales. Journal of Geophysical Research: Space Physics, 124 (1), 90–108. doi: https://doi.org/10.1029/2018ja025318
- Garcia-Ceja, E., Uddin, M. Z., Torresen, J. (2018). Classification of Recurrence Plots’ Distance Matrices with a Convolutional Neural Network for Activity Recognition. Procedia Computer Science, 130, 157–163. doi: https://doi.org/10.1016/j.procs.2018.04.025
- Neves, F. M., Viana, R. L., Pie, M. R. (2017). Recurrence analysis of ant activity patterns. PLOS ONE, 12 (10), e0185968. doi: https://doi.org/10.1371/journal.pone.0185968
- Ozken, I., Eroglu, D., Breitenbach, S. F. M., Marwan, N., Tan, L., Tirnakli, U., Kurths, J. (2018). Recurrence plot analysis of irregularly sampled data. Physical Review E, 98 (5). doi: https://doi.org/10.1103/physreve.98.052215
- Souza, E. G., Viana, R. L., Lopes, S. R. (2008). Using recurrences to characterize the hyperchaos-chaos transition. Physical Review E, 78 (6). doi: https://doi.org/10.1103/physreve.78.066206
- Schinkel, S., Dimigen, O., Marwan, N. (2008). Selection of recurrence threshold for signal detection. The European Physical Journal Special Topics, 164 (1), 45–53. doi: https://doi.org/10.1140/epjst/e2008-00833-5
- Eroglu, D., Marwan, N., Stebich, M., Kurths, J. (2018). Multiplex recurrence networks. Physical Review E, 97 (1). doi: https://doi.org/10.1103/physreve.97.012312
- Webber, C. L., Ioana, C., Marwan, N. (Eds.) (2016). Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics. doi: https://doi.org/10.1007/978-3-319-29922-8
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
- Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.108448
- Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by selfadjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
- Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
- Mindlin, G. M., Gilmore, R. (1992). Topological analysis and synthesis of chaotic time series. Physica D: Nonlinear Phenomena, 58 (1-4), 229–242. doi: https://doi.org/10.1016/0167-2789(92)90111-y
- Thiel, M., Romano, M. C., Kurths, J., Meucci, R., Allaria, E., Arecchi, F. T. (2002). Influence of observational noise on the recurrence quantification analysis. Physica D: Nonlinear Phenomena, 171 (3), 138–152. doi: https://doi.org/10.1016/s0167-2789(02)00586-9
- Pospelov, B., Andronov, V., Meleshchenko, R., Danchenko, Y., Artemenko, I., Romaniak, M. et. al. (2019). Construction of methods for computing recurrence plots in space with a scalar product. Eastern-European Journal of Enterprise Technologies, 3 (4 (99)), 37–44. doi: https://doi.org/10.15587/1729-4061.2019.169887
- Vasiliev, M. I., Movchan, I. O., Koval, O. M. (2014). Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 106–113.
- Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504
- Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
- Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy khimii i khimicheskoi tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
- Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
- Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2019 Boris Pospelov, Olekcii Krainiukov, Alexander Savchenko, Serhii Harbuz, Oleksandr Cherkashyn, Sergey Shcherbak, Ihor Rolin, Viktor Temnikov
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.