Розробка математичних моделей статики зернових середовищ з урахуванням ефекту Рейнольдса
DOI:
https://doi.org/10.15587/1729-4061.2019.184592Ключові слова:
зернисті матеріали, рівноважна термодинаміка, ефект Рейнольдса, горизонтальний зерновий шар, крайова задача, граничні умовиАнотація
Дослідження присвячено побудові математичної моделі, формулюванню крайових задач статики зернистого матеріалу стосовно до технологічних процесів сільськогосподарського виробництва. В якості робочого апарату побудови моделі зернистого матеріалу використовуються методи рівноважної термодинаміки. Сформульована основна термодинамічна рівність, що дозволяє отримати реологічне співвідношення, яке встановлює зв'язок між напруженнями і деформаціями зернистого матеріалу. У якості зернистого матеріалу обиране сипке середовище з проявом ефекту Рейнольдса. Цей ефект має місце в разі малих деформацій і говорить про наявність залежності дилатації від девіатора тензора деформацій. На відміну від класичних методів, де розглядається модель суцільного середовища з недеформованими і гладкими частинками зерна, тут враховується як ефект Рейнольдса, так і наявність пружних деформацій. Отримане реологічне співвідношення дає залежність для тензора напружень від тензора деформацій відповідного співвідношенням лінійної теорії пружності.
У разі ізотермічного процесу деформування сформульована крайова задача статики зернового матеріалу в полі сил тяжіння. В роботі наведені постановка і рішення двох приватних завдань про рівновагу зернистого шару на горизонтальній площині: при відсутності поверхневих сил і при дії дотичних поверхневих сил на вільної поверхні.
Крайові задачі рівноваги зернистого матеріалу носять нелінійний характер, а отримане рішення представляє складний математичний апарат з залученням чисельних методів.
Отримані моделі статики суцільного середовища передує розгляду динамічних завдань, зокрема, вивчення стійкості рівноваги
Посилання
- Aranson, I. S., Tsimring, L. S. (2006). Patterns and collective behavior in granular media: Theoretical concepts. Reviews of Modern Physics, 78 (2), 641–692. doi: https://doi.org/10.1103/revmodphys.78.641
- Börzsönyi, T., Halsey, T. C., Ecke, R. E. (2008). Avalanche dynamics on a rough inclined plane. Physical Review E, 78 (1). doi: https://doi.org/10.1103/physreve.78.011306
- Gujjula, R., Mangadoddy, N. (2015). Hydrodynamic Study of Gas–Solid Internally Circulating Fluidized Bed Using Multiphase CFD Model. Particulate Science and Technology, 33 (6), 593–609. doi: https://doi.org/10.1080/02726351.2015.1013590
- Das, P., Puri, S., Schwartz, M. (2018). Granular fluids with solid friction and heating. Granular Matter, 20 (1). doi: https://doi.org/10.1007/s10035-018-0789-y
- Schwedes, J. (2003). Review on testers for measuring flow properties of bulk solids. Granular Matter, 5 (1), 1–43. doi: https://doi.org/10.1007/s10035-002-0124-4
- Nanka, A., Ievlev, I. (2017). About separation of the impurity in the carrying stream of the grain environment. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 181, 215–222.
- Tishchenko, L., Kharchenko, S., Kharchenko, F., Bredykhin, V., Tsurkan, O. (2016). Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators. Eastern-European Journal of Enterprise Technologies, 2 (7 (80)), 63–69. doi: https://doi.org/10.15587/1729-4061.2016.65920
- Nesterenko, O. V., Leshchenko, S. M., Vasylkovskyi, O. M., Petrenko, D. I. (2017). Analytical assessment of the pneumatic separation quality in the process of grain multilayer feeding. INMATEH. Agricultural Engineering, 53 (3), 65–70.
- Minh, N. H., Cheng, Y. P. (2016). On the contact force distributions of granular mixtures under 1D-compression. Granular Matter, 18 (2). doi: https://doi.org/10.1007/s10035-016-0625-1
- Swisher, N. C., Utter, B. C. (2014). Flow profile of granular avalanches with imposed vertical vibration. Granular Matter, 16 (2), 175–183. doi: https://doi.org/10.1007/s10035-014-0488-2
- Kaviani Rad, H., Nejat Pishkenari, H. (2018). Frictional viscoelastic based model for spherical particles collision. Granular Matter, 20 (4). doi: https://doi.org/10.1007/s10035-018-0835-9
- Gnoli, A., Lasanta, A., Sarracino, A., Puglisi, A. (2016). Unified rheology of vibro-fluidized dry granular media: From slow dense flows to fast gas-like regimes. Scientific Reports, 6 (1). doi: https://doi.org/10.1038/srep38604
- Dijksman, J. A., Wortel, G. H., van Dellen, L. T. H., Dauchot, O., van Hecke, M. (2011). Jamming, Yielding, and Rheology of Weakly Vibrated Granular Media. Physical Review Letters, 107 (10). doi: https://doi.org/10.1103/physrevlett.107.108303
- Gnoli, A., Puglisi, A., Sarracino, A., Vulpiani, A. (2014). Nonequilibrium Brownian Motion beyond the Effective Temperature. PLoS ONE, 9 (4), e93720. doi: https://doi.org/10.1371/journal.pone.0093720
- Liu, H., Yoon, S., Li, M. (2016). Three-dimensional computational fluid dynamics (CFD) study of the gas–particle circulation pattern within a fluidized bed granulator: By full factorial design of fluidization velocity and particle size. Drying Technology, 35 (9), 1043–1058. doi: https://doi.org/10.1080/07373937.2016.1230628
- Ford, K. J., Gilchrist, J. F., Caram, H. S. (2009). Transitions to vibro-fluidization in a deep granular bed. Powder Technology, 192 (1), 33–39. doi: https://doi.org/10.1016/j.powtec.2008.11.017
- Jaeger, H. M., Nagel, S. R., Behringer, R. P. (1996). The Physics of Granular Materials. Physics Today, 49 (4), 32–38. doi: https://doi.org/10.1063/1.881494
- Schreck, C. F., O’Hern, C. S., Shattuck, M. D. (2013). Vibrations of jammed disk packings with Hertzian interactions. Granular Matter, 16 (2), 209–216. doi: https://doi.org/10.1007/s10035-013-0458-0
- Chou, C. (2004). The kinematic model for granular flow in a two‐dimensional symmetrical louvered moving granular filter bed. Journal of the Chinese Institute of Engineers, 27 (2), 299–304. doi: https://doi.org/10.1080/02533839.2004.9670876
- Dahl, S. R., Hrenya, C. M., Garzó, V., Dufty, J. W. (2002). Kinetic temperatures for a granular mixture. Physical Review E, 66 (4). doi: https://doi.org/10.1103/physreve.66.041301
- Pouliquen, O., Forterre, Y. (2009). A non-local rheology for dense granular flows. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 (1909), 5091–5107. doi: https://doi.org/10.1098/rsta.2009.0171
- Das, M. K., Mukherjee, P. P., Muralidhar, K. (2018). Modeling Transport Phenomena in Porous Media with Applications. Springer. doi: https://doi.org/10.1007/978-3-319-69866-3
- Bezmaternykh, A. V., Ofrikhter, V. G. (2017). The phenomenon of dilatancy and its impact оn the nature of deformation of soil under load. MASTER`S JOURNAL, 2, 85–90.
- Bileush, A. I., Krivonog, A. I., Krivonog, V. V., Filimonov,V. Yu. (2011). Strength of granular soil having dilatancy. Prykladna hidromekhanika, 13 (3), 23–32.
- Liu, H., Zhang, S.-H., Cheng, M., Song, H.-W., Trentadue, F. (2015). A minimum principle for contact forces in random packings of elastic frictionless particles. Granular Matter, 17 (4), 475–482. doi: https://doi.org/10.1007/s10035-015-0567-z
- Nicolis, G. (1970). Thermodynamic theory of stability, structure and fluctuations. Pure and Applied Chemistry, 22 (3-4), 379–392. doi: https://doi.org/10.1351/pac197022030379
- Marin, V. I., Didenko, B. A. (2002). Modelirovanie akusticheskogo trakta ustroystva izmereniya protsentnogo soderzhaniya svyazuyushchego. Matematicheskie metody v tehnike i tehnologiyah: sb. tr. XV Mezhdunar. nauch. konf. Tambov, 59–62.
- Langston, P. A., Nikitidis, M. S., Tüzün, V., Heyes, D. M. (1998). Tomographic measurements and distinct element simulations of binary granular flow voidage. World Congress on particle Technology 3. Brighton, UK, 333.
- Millen, M. J., Sowerby, B. D., Abemethy, D. A., Kingsiey, R., Grima, C. (1997). On-line measurement of pulverised coal mass flow using an ultrasonic technique. Powder technology, 92, 105–113.
- Schlaberg, H. I., Podd, F. J. W., Hoyle, B. S. (2000). Ultrasound process tomography system for hydrocyclones. Ultrasonics, 38 (1-8), 813–816. doi: https://doi.org/10.1016/s0041-624x(99)00189-4
- Dolgunin, V. N., Ivanov, O. O., Borshchev, V. Ya. (2016). Sdvigovye techeniya zernistyh sred: zakonomernosti i tehnologicheskie aspekty. Tambov: Izd-vo FGBOU VO «TGTU», 168.
- Jaeger, H. M., Nagel, S. R., Behringer, R. P. (1996). Granular solids, liquids, and gases. Reviews of Modern Physics, 68 (4), 1259–1273. doi: https://doi.org/10.1103/revmodphys.68.1259
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2019 Alexander Nanka, Ivan Iyevlev, Vitaliy Sementsov, Denis Boiko, Viktor Duhanets
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.