Дослідження алгоритму стабілізації напруги на комірках шестирівневого модульного інвертора

Автор(и)

  • Oleksandr Plakhtii Конструкторське бюро ТОВ «ВО ОВЕН» вул. Гвардійців-Широнівців, 3А, м. Харків, Україна, 61153, Україна https://orcid.org/0000-0002-1535-8991
  • Volodymyr Nerubatskyi Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050, Україна https://orcid.org/0000-0002-4309-601X
  • Nadiia Karpenko Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050, Україна https://orcid.org/0000-0002-9252-9934
  • Olha Ananieva Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050, Україна https://orcid.org/0000-0001-6686-8249
  • Hryhorii Khoruzhevskyi Конструкторське бюро ТОВ «ВО ОВЕН» вул. Гвардійців-Широнівців, 3А, м. Харків, Україна, 61153, Україна https://orcid.org/0000-0003-2042-4938
  • Vitaliy Kavun Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050, Україна https://orcid.org/0000-0002-9411-5567

DOI:

https://doi.org/10.15587/1729-4061.2019.185404

Ключові слова:

модульний багаторівневий інвертор, перетворювач, просторово-векторний алгоритм модуляції, широтно-імпульсна модуляція

Анотація

Багаторівневі автономні перетворювачі напруги знаходять все більш широке застосування у промисловості, а саме: у вітровій та сонячній енергетиці, високовольтних підстанціях, у промислових та тягових електроприводах. Багаторівневі інвертори у порівнянні з дворівневими інверторами мають ряд значних переваг, а саме, більша вихідна потужність, більше значення ККД, менший вміст вищих гармонік у навантаженні та мережі живлення. Зменшення вмісту вищих гармонік вихідного струму багаторівневого інвертора безпосередньо знижує додаткові втрати в навантаженні та підвищує загальне значення ККД.

Проведене дослідження шестирівневого модульного інвертора показало, що алгоритм просторово-векторної модуляції викликає дисбаланс напруги на конденсаторах комірок. При цьому напруга на половині комірок прямує до нуля, а на іншій половині комірок збільшується вдвоє, що призводить до значного спотворення вихідної напруги. Представлено причини цієї нестабільності, а також вдосконалений просторово-векторний алгоритм модуляції багаторівневого перетворювача, що дозволяє стабілізувати напругу в комірках.

Запропоновано алгоритм стабілізації напруги на комірках модульного багаторівневого інвертора. Стабілізація напруги досягається гістерезисним регулюванням з почерговим переходом просторово-векторної широтно-імпульсної модуляції та інверсної векторної системи керування за умови відхилення напруги на комірці вище або нижче заданого допустимого рівня.

У програмі Matlab 2017b проведено імітаційне моделювання шестирівневого інвертора напруги, що підтверджує ефективність запропонованого алгоритму модуляції

Біографії авторів

Oleksandr Plakhtii, Конструкторське бюро ТОВ «ВО ОВЕН» вул. Гвардійців-Широнівців, 3А, м. Харків, Україна, 61153

Кандидат технічних наук, інженер-електронік

Volodymyr Nerubatskyi, Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050

Кандидат технічних наук, доцент

Кафедра електроенергетики, електротехніки та електромеханіки

Nadiia Karpenko, Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050

Кандидат технічних наук, доцент

Кафедра електроенергетики, електротехніки та електромеханіки

Olha Ananieva, Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050

Доктор технічних наук, доцент

Кафедра автоматики та комп’ютерного телекерування рухом поїздів

Hryhorii Khoruzhevskyi, Конструкторське бюро ТОВ «ВО ОВЕН» вул. Гвардійців-Широнівців, 3А, м. Харків, Україна, 61153

Інженер-конструктор

Vitaliy Kavun, Український державний університет залізничного транспорту пл. Фейєрбаха, 7, м. Харків, Україна, 61050

Аспірант

Кафедра електроенергетики, електротехніки та електромеханіки

Посилання

  1. Zhemerov, G. G., Krylov, D. S. (2018). Concept of construction of power circuits of a multilevel modular converter and its transistor modules. Electrical Engineering & Electromechanics, 6, 26–32. doi: https://doi.org/10.20998/2074-272x.2018.6.03
  2. Kumari, B., Sankar, M. (2014). Modeling and individual voltage balancing control of modular multilevel cascade converter. International Journal of Emerging Engineering Research and Technology, 2 (1), 42–48.
  3. Gevorkyan, E. S., Rucki, M., Kagramanyan, A. A., Nerubatskiy, V. P. (2019). Composite material for instrumental applications based on micro powder Al2O3 with additives nano-powder SiC. International Journal of Refractory Metals and Hard Materials, 82, 336–339. doi: https://doi.org/10.1016/j.ijrmhm.2019.05.010
  4. Bohra, A., Sajeesh, D., Patel, C., Saldanha, M. (2016). Modulation techniques in single phase PWM rectifier. IJCA Proceedings on International Conference on Advances in Science and Technology, 5–7.
  5. Deng, Y., Teo, K. H., Duan, C., Habetler, T. G., Harley, R. G. (2014). A Fast and Generalized Space Vector Modulation Scheme for Multilevel Inverters. IEEE Transactions on Power Electronics, 29 (10), 5204–5217. doi: https://doi.org/10.1109/tpel.2013.2293734
  6. Sonia, K., Seshadri, G. (2015). Analysis and modelling of a multilevel inverter in distribution system with FACTS capability. International Journal of Innovative Research in Science, Engineering and Technology, 4 (5), 3015–3021.
  7. Javier Arcega Solsona, F., Pardina Carrera, A. (2014). Study of harmonics thermal effect in conductors produced by skin effect. IEEE Latin America Transactions, 12 (8), 1488–1495. doi: https://doi.org/10.1109/tla.2014.7014518
  8. Scherback, Y. V., Plakhtiy, O. A., Nerubatskiy, V. P. (2017). Control characteristics of active four-quadrant converter in rectifier and recovery mode. Tekhnichna Elektrodynamika, 6, 26–31. doi: https://doi.org/10.15407/techned2017.06.026
  9. Shobini, M. M., Kamala, J., Rathna, R. (2017). Analysis and simulation of flying capacitor multilevel inverter using PDPWM strategy. 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). doi: https://doi.org/10.1109/icimia.2017.7975578
  10. Kurwale, M. V., Sharma, P. G., Bacher, G. (2014). Performance analysis of modular multilevel converter (MMC) with continuous and discontinuous pulse width modulation (PWM). International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3 (2), 7463–7474. Available at: https://pdfs.semanticscholar.org/d351/b7b2b80426065468fd39c8d746f70fee1296.pdf
  11. Oleksandr, P., Volodymyr, N. (2018). Analyses of Energy Efficiency of Interleaving in Active Voltage-Source Rectifier. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). doi: https://doi.org/10.1109/ieps.2018.8559514
  12. Swamy, M., Guddanti, C. (2014). An improved single-phase active front end rectifier system for use with three-phase variable frequency drives. 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014. doi: https://doi.org/10.1109/apec.2014.6803514
  13. Martinez-Rodrigo, F., Ramirez, D., Rey-Boue, A., de Pablo, S., Herrero-de Lucas, L. (2017). Modular Multilevel Converters: Control and Applications. Energies, 10 (11), 1709. doi: https://doi.org/10.3390/en10111709
  14. Deng, F., Chen, Z. (2015). Voltage-Balancing Method for Modular Multilevel Converters Switched at Grid Frequency. IEEE Transactions on Industrial Electronics, 62 (5), 2835–2847. doi: https://doi.org/10.1109/tie.2014.2362881
  15. Du, S., Dekka, A., Wu, B., Zargari, N. (2018). Modular Multilevel Converters: Analysis, Control, and Applications. Wiley-IEEE Press, 368. doi: https://doi.org/10.1002/9781119367291
  16. Shruti, K. K., Valsalan, T., Poorani, S. (2017). Single phase active front end rectifier system employed in three phase variable frequency drive. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 121–129. Available at: https://ijireeice.com/wp-content/uploads/2017/05/IJIREEICE-nCORETech-16.pdf
  17. Sondur, V. V., Sondur, V. B., Rao, D. H., Latte, M. V., Ayachit, N. H. (2007). Issues in the Design of Equiripple FIR Higher Order Digital Differentiators using Weighted Least Squares Technique. 2007 IEEE International Conference on Signal Processing and Communications. doi: https://doi.org/10.1109/icspc.2007.4728287
  18. Ahmadzadeh, T., Sabahi, M., Babaei, E. (2017). Modified PWM control method for neutral point clamped multilevel inverters. 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). doi: https://doi.org/10.1109/ecticon.2017.8096351
  19. Gervasio, F., Mastromauro, R. A., Liserre, M. (2015). Power losses analysis of two-levels and three-levels PWM inverters handling reactive power. 2015 IEEE International Conference on Industrial Technology (ICIT). doi: https://doi.org/10.1109/icit.2015.7125248
  20. Deng, Y., Wang, Y., Teo, K. H., Harley, R. G. (2016). A Simplified Space Vector Modulation Scheme for Multilevel Converters. IEEE Transactions on Power Electronics, 31 (3), 1873–1886. doi: https://doi.org/10.1109/tpel.2015.2429595
  21. Chen, F., Qiao, W. (2016). A general space vector PWM scheme for multilevel inverters. 2016 IEEE Energy Conversion Congress and Exposition (ECCE). doi: https://doi.org/10.1109/ecce.2016.7854687
  22. Colak, K., Asa, E., Czarkowski, D. (2016). A novel phase control of single switch active rectifier for inductive power transfer applications. 2016 IEEE Applied Power Electronics Conference and Exposition (APEC). doi: https://doi.org/10.1109/apec.2016.7468107
  23. Wei, L., Jankovic, Z., Patel, Y. P., Hu, J. (2016). Single phase precharge control method for active front end rectifier. 2016 IEEE Energy Conversion Congress and Exposition (ECCE). doi: https://doi.org/10.1109/ecce.2016.7855436
  24. Meshram, P. M., Borghate, V. B. (2012). A novel voltage balancing method applied to direct control strategy of MMC-HVDC system. IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012), 448–452.
  25. Bashir, S. B., Memon, Z. A. (2018). An Improved Voltage Balancing Method for Grid Connected PV System Based on MMC Under Different Irradiance Conditions. 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). doi: https://doi.org/10.1109/mwscas.2018.8623947
  26. Solas, E., Abad, G., Barrena, J. A., Aurtenetxea, S., Carcar, A., & Zajac, L. (2013). Modular Multilevel Converter With Different Submodule Concepts – Part I: Capacitor Voltage Balancing Method. IEEE Transactions on Industrial Electronics, 60 (10), 4525–4535. doi: https://doi.org/10.1109/tie.2012.2210378
  27. Lin Wang, Ping Wang, Zixin Li, Yaohua Li. (2013). A novel capacitor voltage balancing control strategy for modular multilevel converters (MMC). 2013 International Conference on Electrical Machines and Systems (ICEMS). doi: https://doi.org/10.1109/icems.2013.6713283
  28. Dai, P., Guo, G., Gong, Z. (2016). A Selection Precharge Method for Modular Multilevel Converter. International Journal of Control and Automation, 9 (4), 161–170. doi: https://doi.org/10.14257/ijca.2016.9.4.16
  29. Bashir, S. B., Beig, A. R. (2016). A novel SVPWM-based switching algorithm for MMC for high power applications. 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS). doi: https://doi.org/10.1109/mwscas.2016.7870123
  30. Plakhtii, O., Nerubatskyi, V., Ryshchenko, I., Zinchenko, O., Tykhonravov, S., Hordiienko, D. (2019). Determining additional power losses in the electricity supply systems due to current's higher harmonics. Eastern-European Journal of Enterprise Technologies, 1 (8 (97)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.155672
  31. Zheng, Z., Can, C. (2014). The research of control algorithm and topology for high voltage frequency converter based on modular multilevel converter. The 26th Chinese Control and Decision Conference (2014 CCDC). doi: https://doi.org/10.1109/ccdc.2014.6852960
  32. Plakhtii, O., Nerubatskyi, V., Karpenko, N., Hordiienko, D., Butova, O., Khoruzhevskyi, H. (2019). Research into energy characteristics of single-phase active four-quadrant rectifiers with the improved hysteresis modulation. Eastern-European Journal of Enterprise Technologies, 5 (8 (101)), 36–44. doi: https://doi.org/10.15587/1729-4061.2019.179205
  33. Plakhtii, O., Tsybulnyk, V., Nerubatskyi, V., Mittsel, N. (2019). The Analysis Of Modulation Algorithms and Electromagnetic Processes in a Five-Level Voltage Source Inverter with Clamping Diodes. 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES). doi: https://doi.org/10.1109/mees.2019.8896567
  34. Podder, S., Biswas, M. M., Khan, M. Z. R. (2016). A modified PWM technique to improve total harmonic distortion of Multilevel Inverter. 2016 9th International Conference on Electrical and Computer Engineering (ICECE). doi: https://doi.org/10.1109/icece.2016.7853970
  35. Zhao, L., Wang, Q., Li, G., Chen, Q., Hu, C. (2014). Analyze and compare the efficiency of two-level and three-level inverter in SVPWM. 2014 9th IEEE Conference on Industrial Electronics and Applications. doi: https://doi.org/10.1109/iciea.2014.6931488
  36. Dias, R. A., Lira, G. R. S., Costa, E. G., Ferreira, R. S., Andrade, A. F. (2018). Skin effect comparative analysis in electric cables using computational simulations. 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE). doi: https://doi.org/10.1109/sbse.2018.8395687
  37. Zhou J., Suand J., Wang X. (2014). Pre-charging control of modular multilevel converter. High Voltage Apparatus, 50 (4), 103–107.
  38. Plakhtii, O., Nerubatskyi, V., Sushko, D., Ryshchenko, I., Tsybulnyk, V., Hordiienko, D. (2019). Improving energy characteristics of ac electric rolling stock by using the three-level active four-quadrant rectifiers. Eastern-European Journal of Enterprise Technologies, 4 (8 (100)), 6–14. doi: https://doi.org/10.15587/1729-4061.2019.174112
  39. Plakhtii, O. A., Nerubatskyi, V. P., Hordiienko, D. A., Tsybulnyk, V. R. (2019). Analysis of the energy efficiency of a two-level voltage source inverter in the overmodulation mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4 (172), 68–72. doi: https://doi.org/10.29202/nvngu/2019-4/9
  40. Plakhtii, O. A., Nerubatskyi, V. P., Kavun, V. Ye., Hordiienko, D. A. (2019). Active single-phase four-quadrant rectifier with improved hysteresis modulation algorithm. Scientific bulletin of National mining university, 5 (173), 93–98. doi: https://doi.org/10.29202/nvngu/2019-5/16

##submission.downloads##

Опубліковано

2019-12-02

Як цитувати

Plakhtii, O., Nerubatskyi, V., Karpenko, N., Ananieva, O., Khoruzhevskyi, H., & Kavun, V. (2019). Дослідження алгоритму стабілізації напруги на комірках шестирівневого модульного інвертора. Eastern-European Journal of Enterprise Technologies, 6(8 (102), 19–27. https://doi.org/10.15587/1729-4061.2019.185404

Номер

Розділ

Енергозберігаючі технології та обладнання