Визначення закономірностей впливу складу електроліту і домішок на вміст -AL2O3 фази в МДО-покриттях на алюмінії

Автор(и)

  • Valeria Subbotinа Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-3882-0368
  • Ubeidulla F. Al-Qawabeha Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733, Йорданія
  • Valery Belozerov Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-7623-3658
  • Oleg Sоbоl Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-4497-4419
  • Alexander Subbotin Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-9422-4480
  • Taha A. Tabaza Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733, Йорданія
  • Safwan Moh`d Al-Qawabah Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733, Йорданія

DOI:

https://doi.org/10.15587/1729-4061.2019.185674

Ключові слова:

мікродугове оксидування, анодно-катодний режим, склад електроліту, легування, фазовий склад, корунд

Анотація

Методоммікродуговогооксидуваннятехнічночистогоалюмініюіалюмініюлегованогоміддюіцинкомвлужно – силикатномелектролітіприщільностіструму ~ 20 А/дм² одержаніпокриттятовщиноюблизько 100 мкм. Наведено результати дослідження морфології поверхні, фазового складу і твердості МДО-покриттів. Параметрами зміни служили склад електроліту і концентрація легуючих (Cu і Zn) елементів. Це дослідження проведено тому, що наявних в даний час даних не достатньо для уявлення про характер впливу хімічного складу алюмінієвого сплаву і умов електролізу (зокрема, складу електроліту) на механізм і кінетику перетворення γ → α. А без розуміння цього спрямована зміна структурного стану і властивостей МДО покриттів стає неможливою. В результаті досліджень було встановлено, що при мікродуговом оксидуванні алюмінієвих сплавів в лужному електроліті з додаванням рідкого скла (Na2SiO3) різної концентрації зміцнений шар складається з оксидів α-А12О3, γ-А12О3 і муллита 3Al2O3•2SiO2. Дані рентгеноструктурного аналізу покриттів свідчать про кристалічну будову покриттів. Встановлено, що легування алюмінію міддю і цинком істотно впливає на фазовий склад покриття, змінюючи кількісне співвідношення фаз нелінійним чином. Найбільший вміст α-А12О3 фази (до 60 об. %) досягається при легуванні Cu. При цьому найбільш висока твердість МДО покриттів досягається при використанні електроліту складу 1 г/л KOH і 6 г/л Na2SiO3 в алюмінієвих сплавах при вмісті міді більше 3 %, а цинку - 2-3 %. Встановлено, що механізм формування фазового складу слід пов'язати зі стабілізацією і дестабілізацією фази γ-А12О3. З цього для досягнення високої твердості слід вибирати ті легуючі елементи, які впливають на дестабілізацію γ-А12О3, що забезпечує утворення фази α-А12О3 (корунд). У зв'язку з цим виявлено, що катіони Cu2+ сприяють дестабілізації фази γ-А12О3, а катіони Zn2+ - призводять до стабілізації фази γ-А12О3 при утриманні Zn> 3 %

Біографії авторів

Valeria Subbotinа, Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002

Кандидат технічних наук, доцент

Кафедра матеріалознавства

Ubeidulla F. Al-Qawabeha, Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733

PhD, Associate Professor

Department of Mechanical Engineering, Faculty of Engineering

Valery Belozerov, Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002

Кандидат технічних наук, професор

Кафедра матеріалознавства

Oleg Sоbоl, Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002

Доктор фізико-математичних наук, професор

Кафедра матеріалознавства

Alexander Subbotin, Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002

Науковий співробітник

Кафедра матеріалознавства

Taha A. Tabaza, Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733

PhD, Associate Professor

Department of Mechanical Engineering, Faculty of Engineering

Safwan Moh`d Al-Qawabah, Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733

PhD, Associate Professor, Dean - Faculty of Engineering and Technology

Department of Mechanical Engineering, Faculty of Engineering

Посилання

  1. Radionenko, O., Kindrachuk, M., Tisov, O., Kryzhanovskyi, A. (2018). Features of transition modes of friction surfaces with partially regular microrelief. Aviation, 22 (3), 86–92. doi: https://doi.org/10.3846/aviation.2018.6204
  2. Panarin, V. Y., Svavil’nyy, M. Y., Khominych, A. I., Kindrachuk, M. V., Kornienko, A. O. (2017). Creation of a Diffusion Barrier at the Interphase Surface of Composite Coatings Reinforced with Carbon Nanotubes. Journal of Nano- and Electronic Physics, 9 (6), 06023-1–06023-5. doi: https://doi.org/10.21272/jnep.9(6).06023
  3. Sobol´, O. V., Andreev, A. A., Gorban´, V. F., Meylekhov, A. A., Postelnyk, Н. О. (2016). Structural Engineering of the Vacuum Arc ZrN/CrN Multilayer Coatings. Journal of Nano- and Electronic Physics, 8 (1), 01042-1–01042-5. doi: https://doi.org/10.21272/jnep.8(1).01042
  4. Sobol’, O. V. (2016). Structural Engineering Vacuum-plasma Coatings Interstitial Phases. Journal of Nano- and Electronic Physics, 8 (2), 02024-1–02024-7. doi: https://doi.org/10.21272/jnep.8(2).02024
  5. Mayrhofer, P. H., Mitterer, C., Hultman, L., Clemens, H. (2006). Microstructural design of hard coatings. Progress in Materials Science, 51 (8), 1032–1114. doi: https://doi.org/10.1016/j.pmatsci.2006.02.002
  6. Sobol’, O. V., Andreev, A. A., Gorban’, V. F. (2016). Structural Engineering of Vacuum-ARC Multiperiod Coatings. Metal Science and Heat Treatment, 58 (1-2), 37–39. doi: https://doi.org/10.1007/s11041-016-9961-3
  7. Morton, B. D., Wang, H., Fleming, R. A., Zou, M. (2011). Nanoscale Surface Engineering with Deformation-Resistant Core–Shell Nanostructures. Tribology Letters, 42 (1), 51–58. doi: https://doi.org/10.1007/s11249-011-9747-0
  8. Barmin, A. E., Zubkov, A. I., Il'inskii, A. I. (2012). Structural features of the vacuum condensates of iron alloyed with tungsten. Functional Materials, 19 (2), 256–259.
  9. Glushchenko, M. A., Belozyorov, V. V., Sobol, O. V., Subbotina, V. V., Zelenskaya, G. I. (2017). Effect of Tantalum on the Texture of Copper Vacuum Condensates. Journal of Nano- and Electronic Physics, 9 (2), 02015-1–02015-5. doi: https://doi.org/10.21272/jnep.9(2).02015
  10. Glushchenko, M. A., Lutsenko, E. V., Sobol’, O. V., Barmin, A. E., Zubkov, A. I. (2016). The Influence of Copper Condensates Alloying with Co, Mo, Ta Transition Metals on the Structure and the Hall-Petch Dependence. Journal of Nano- and Electronic Physics, 8(3), 03015-1–03015-4. doi: https://doi.org/10.21272/jnep.8(3).03015
  11. Krause-Rehberg, R., Pogrebnyak, A. D., Borisyuk, V. N., Kaverin, M. V., Ponomarev, A. G., Bilokur, M. A. et. al. (2013). Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode. The Physics of Metals and Metallography, 114 (8), 672–680. doi: https://doi.org/10.1134/s0031918x13080061
  12. Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Krapivka, N. A., Stolbovoi, V. A., Serdyuk, I. V., Fil’chikov, V. E. (2012). Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method. Technical Physics Letters, 38 (7), 616–619. doi: https://doi.org/10.1134/s1063785012070127
  13. Sobol’, O. V., Meilekhov, A. A. (2018). Conditions of Attaining a Superhard State at a Critical Thickness of Nanolayers in Multiperiodic Vacuum-Arc Plasma Deposited Nitride Coatings. Technical Physics Letters, 44 (1), 63–66. doi: https://doi.org/10.1134/s1063785018010224
  14. Sobol, O. V., Postelnyk, A. A., Meylekhov, A. A., Andreev, A. A., Stolbovoy, V. A. (2017). Structural Engineering of the Multilayer Vacuum Arc Nitride Coatings Based on Ti, Cr, Mo and Zr. Journal of Nano- and Electronic Physics, 9 (3), 03003-1–03003-6. doi: https://doi.org/10.21272/jnep.9(3).03003
  15. Nashrah, N., Kamil, M. P., Yoon, D. K., Kim, Y. G., Ko, Y. G. (2019). Formation mechanism of oxide layer on AZ31 Mg alloy subjected to micro-arc oxidation considering surface roughness. Applied Surface Science, 497, 143772. doi: https://doi.org/10.1016/j.apsusc.2019.143772
  16. Muhaffel, F., Kaba, M., Cempura, G., Derin, B., Kruk, A., Atar, E., Cimenoglu, H. (2019). Influence of alumina and zirconia incorporations on the structure and wear resistance of titania-based MAO coatings. Surface and Coatings Technology, 377, 124900. doi: https://doi.org/10.1016/j.surfcoat.2019.124900
  17. Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A., Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122 (2-3), 73–93. doi: https://doi.org/10.1016/s0257-8972(99)00441-7
  18. Wang, S., Xie, F., Wu, X. (2017). Mechanism of Al2O3 coating by cathodic plasma electrolytic deposition on TiAl alloy in Al(NO3)3 ethanol-water electrolytes. Materials Chemistry and Physics, 202, 114–119. doi: https://doi.org/10.1016/j.matchemphys.2017.09.006
  19. Yang, Y., Gu, Y., Zhang, L., Jiao, X., Che, J. (2017). Influence of MAO Treatment on the Galvanic Corrosion Between Aluminum Alloy and 316L Steel. Journal of Materials Engineering and Performance, 26 (12), 6099–6106. doi: https://doi.org/10.1007/s11665-017-3037-4
  20. Zhang, X., Li, C., Yu, Y., Lu, X., Lv, Y., Jiang, D. et. al. (2019). Characterization and property of bifunctional Zn-incorporated TiO2 micro-arc oxidation coatings: The influence of different Zn sources. Ceramics International, 45 (16), 19747–19756. doi: https://doi.org/10.1016/j.ceramint.2019.06.228
  21. Zong, Y., Cao, G. P., Hua, T. S., Cai, S. W., Song, R. G. (2019). Effects of electrolyte system on the microstructure and properties of MAO ceramics coatings on 7050 high strength aluminum alloy. Anti-Corrosion Methods and Materials, 66 (6), 812–818. doi: https://doi.org/10.1108/acmm-02-2019-2083
  22. Sedelnikova, M. B., Komarova, E. G., Sharkeev, Y. P., Ugodchikova, A. V., Mushtovatova, L. S., Karpova, M. R. et. al. (2019). Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: Properties and behavior in synthetic biological media. Surface and Coatings Technology, 369, 52–68. doi: https://doi.org/10.1016/j.surfcoat.2019.04.021
  23. Dehghanghadikolaei, A., Ibrahim, H., Amerinatanzi, A., Hashemi, M., Moghaddam, N. S., Elahinia, M. (2019). Improving corrosion resistance of additively manufactured nickel–titanium biomedical devices by micro-arc oxidation process. Journal of Materials Science, 54 (9), 7333–7355. doi: https://doi.org/10.1007/s10853-019-03375-1
  24. Zlotnikov, I. I., Shapovalov, V. M. (2019). Improving the Antifriction Properties of Ceramic Coatings Obtained by the Method of MAO on Aluminum Alloys. Journal of Friction and Wear, 40 (5), 360–363. doi: https://doi.org/10.3103/s1068366619050222
  25. Shao, Q., Jiang, B., Huang, S. (2019). A comparative study on the microstructure and corrosion resistance of MAO coatings prepared in alkaline and acidic electrolytes. Materials Research Express, 6 (8), 0865b4. doi: https://doi.org/10.1088/2053-1591/ab2014
  26. Li, G., Wang, Y., Qiao, L., Zhao, R., Zhang, S., Zhang, R. et. al. (2019). Preparation and formation mechanism of copper incorporated micro-arc oxidation coatings developed on Ti-6Al-4V alloys. Surface and Coatings Technology, 375, 74–85. doi: https://doi.org/10.1016/j.surfcoat.2019.06.096
  27. Huang, H., Qiu, J., Sun, M., Liu, W., Wei, X. (2019). Morphological evolution and burning behavior of oxide coating fabricated on aluminum immersed in etidronic acid at high current density. Surface and Coatings Technology, 374, 83–94. doi: https://doi.org/10.1016/j.surfcoat.2019.05.081
  28. Gecu, R., Yurekturk, Y., Tekoglu, E., Muhaffel, F., Karaaslan, A. (2019). Improving wear resistance of 304 stainless steel reinforced AA7075 aluminum matrix composite by micro-arc oxidation. Surface and Coatings Technology, 368, 15–24. doi: https://doi.org/10.1016/j.surfcoat.2019.04.029
  29. Yang, X., Chen, L., Jin, X., Du, J., Xue, W. (2019). Influence of temperature on tribological properties of microarc oxidation coating on 7075 aluminium alloy at 25 °C –300 °C. Ceramics International, 45 (9), 12312–12318. doi: https://doi.org/10.1016/j.ceramint.2019.03.146
  30. Belozerov, V., Mahatilova, A., Sobol’, O., Subbotinа, V., Subbotin, A. (2017). Improvement of energy efficiency in the operation of a thermal reactor with submerged combustion apparatus through the cyclic input of energy. Eastern-European Journal of Enterprise Technologies, 2 (5 (86)), 39–43. doi: https://doi.org/10.15587/1729-4061.2017.96721
  31. Belozerov, V., Sоbоl, O., Mahatilova, A., Subbotinа, V., Tabaza, T. A., Al-Qawabeha, U. F., Al-Qawabah, S. M. (2017). The influence of the conditions of microplasma processing (microarc oxidation in anode­cathode regime) of aluminum alloys on their phase composition. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 52–57. doi: https://doi.org/10.15587/1729-4061.2017.112065
  32. Tihonenko, V. V., Shkil'ko, A. M. (2012). Method of microarc oxidation. Eastern-European Journal of Enterprise Technologies, 2 (13 (56)), 13–18. Available at: http://journals.uran.ua/eejet/article/view/3940/3608
  33. Curran, J. A., Clyne, T. W. (2005). Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surface and Coatings Technology, 199 (2-3), 168–176. doi: https://doi.org/10.1016/j.surfcoat.2004.09.037
  34. Martin, J., Nominé, A. V., Stef, J., Nominé, A., Zou, J. X., Henrion, G., Grosdidier, T. (2019). The influence of metallurgical state of substrate on the efficiency of plasma electrolytic oxidation (PEO) process on magnesium alloy. Materials & Design, 178, 107859. doi: https://doi.org/10.1016/j.matdes.2019.107859
  35. Belozerov, V., Sоbоl, O., Mahatilova, A., Subbotinа, V., Tabaza, T. A., Al-Qawabeha, U. F., Al-Qawabah, S. M. (2018). Effect of electrolysis regimes on the structure and properties of coatings on aluminum alloys formed by anode­cathode micro arc oxidation. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 43–47. doi: https://doi.org/10.15587/1729-4061.2018.121744
  36. Subbotina, V. V., Sobol, O. V., Belozerov, V. V., Makhatilova, A. I., Shnayder, V. V. (2019). Use of the Method of Micro-arc Plasma Oxidation to Increase the Antifriction Properties of the Titanium Alloy Surface. Journal of Nano- and Electronic Physics, 11 (3), 03025-1–03025-5. doi: https://doi.org/10.21272/jnep.11(3).03025
  37. Madhavi, Y., Rama Krishna, L., Narasaiah, N. (2019). Influence of micro arc oxidation coating thickness and prior shot peening on the fatigue behavior of 6061-T6 Al alloy. International Journal of Fatigue, 126, 297–305. doi: https://doi.org/10.1016/j.ijfatigue.2019.05.013
  38. Li, C.-Y., Feng, X.-L., Fan, X.-L., Yu, X.-T., Yin, Z.-Z., Kannan, M. B. et. al. (2019). Corrosion and Wear Resistance of Micro‐Arc Oxidation Composite Coatings on Magnesium Alloy AZ31–The Influence of Inclusions of Carbon Spheres. Advanced Engineering Materials, 21 (9), 1900446. doi: https://doi.org/10.1002/adem.201900446
  39. Lai, P., Zhang, H., Zhang, L., Zeng, Q., Lu, J., Guo, X. (2019). Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water. Wear, 424-425, 53–61. doi: https://doi.org/10.1016/j.wear.2019.02.001
  40. Zhang, Y., Chen, F., Zhang, Y., Liu, Z., Wang, X., Du, C. (2019). Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on Mg Li alloy. Surface and Coatings Technology, 364, 144–156. doi: https://doi.org/10.1016/j.surfcoat.2019.01.103
  41. Lesnevskiy, L. N., Lyakhovetskiy, M. A., Kozhevnikov, G. D., Ushakov, A. M. (2019). Research of the AK4-1 alloy microarc oxidation modes effect on the composite ceramic coatings erosion resistance. Journal of Physics: Conference Series, 1281, 012048. doi: https://doi.org/10.1088/1742-6596/1281/1/012048
  42. Hua, T. S., Song, R. G., Zong, Y., Cai, S. W., Wang, C. (2019). Effect of solution pH on stress corrosion and electrochemical behaviour of aluminum alloy with micro-arc oxidation coating. Materials Research Express, 6 (9), 096441. doi: https://doi.org/10.1088/2053-1591/ab30fc
  43. Wang, J., Huang, S., Huang, H., He, M., Wangyang, P., Gu, L. (2019). Effect of micro-groove on microstructure and performance of MAO ceramic coating fabricated on the surface of aluminum alloy. Journal of Alloys and Compounds, 777, 94–101. doi: https://doi.org/10.1016/j.jallcom.2018.10.374
  44. Li, Z., Cai, Z., Cui, Y., Liu, J., Zhu, M. (2019). Effect of oxidation time on the impact wear of micro-arc oxidation coating on aluminum alloy. Wear, 426-427, 285–295. doi: https://doi.org/10.1016/j.wear.2019.01.084
  45. Zhang, J., Kong, D. (2019). Effect of Micro-Arc Oxidation on Friction–Wear Behavior of Cold-Sprayed Al Coating in 3.5 wt.% NaCl Solution. Journal of Materials Engineering and Performance, 28 (5), 2716–2725. doi: https://doi.org/10.1007/s11665-019-04076-1

##submission.downloads##

Опубліковано

2019-12-03

Як цитувати

Subbotinа V., Al-Qawabeha, U. F., Belozerov, V., Sоbоl O., Subbotin, A., Tabaza, T. A., & Al-Qawabah, S. M. (2019). Визначення закономірностей впливу складу електроліту і домішок на вміст -AL2O3 фази в МДО-покриттях на алюмінії. Eastern-European Journal of Enterprise Technologies, 6(12 (102), 6–13. https://doi.org/10.15587/1729-4061.2019.185674

Номер

Розділ

Матеріалознавство