Багатофакторний нечіткий аналіз для моделювання попиту на перевезення до туристичних міст

Автор(и)

  • А. Б. Білоус Національний університет «Львівська політехніка» вул. Степана Бандери, 12, м. Львів, Україна, 79013, Україна
  • І. А. Могила Національний університет «Львівська політехніка» вул. Степана Бандери, 12, м. Львів, Україна, 79013, Україна https://orcid.org/0000-0001-9710-6191

DOI:

https://doi.org/10.15587/1729-4061.2011.1910

Ключові слова:

Багатофакторний аналіз, теорія нечітких множин, прогнозування попиту на перевезення

Анотація

В статті відображено розвиток нового підходу в моделюванні попиту на перевезення до туристичних міст, який поєднує поведінкову модель попиту на перевезення і модель прямого попиту. Багатофакторний нечіткий аналіз застосовується для розрахунку узагальнених корисностей типів пересувань (потужність продукування поїздок і привабливість транспортної зони). Це надає моделі прямого попиту поведінкову основу деталізованої моделі, в якій вибір щодо перевезення часто розглядається як процес прийняття рішення. Він також об’єднує дві різні теорії в сфері прийняття рішення, так звану теорію дискретного вибору (яка базується на ймовірнісному підході) і багатофакторний нечіткий аналіз (який базується на теорії нечітких множин)

Біографії авторів

А. Б. Білоус, Національний університет «Львівська політехніка» вул. Степана Бандери, 12, м. Львів, Україна, 79013

Кандидат технічних наук, доцент

Кафедра транспортних технологій

І. А. Могила, Національний університет «Львівська політехніка» вул. Степана Бандери, 12, м. Львів, Україна, 79013

Аспірант

Кафедра транспортних технологій

Посилання

  1. Ben-Akiva, M.E. and Lerman, S.R. Discrete Choice Analysis: Theory and Application to Travel Demand. The MIT Press, Cambridge, Mass.
  2. Ben-Akiva, M.E. and Bierlaire, M. [Online, accessed 25 September 2002] Discrete Choice Methods and Their Applications to Short Term Travel Decisions, available at URL: http://dmawww.epfl.ch/roso.mosaic/mbi/handbook-final.htm
  3. Bennett, C.R. and Paterson, W.D.O. The Highway Development and Management Series Volume Five: A Guide to Calibration and Adaptation, The World Road Association (PIARC), Paris and The World Bank, Washington, DC
  4. Chen, S.J., and Hwang, C.L. Fuzzy Multiple Attribute Decision Making. Lecture Notes in Econom. and Math. System 375, Springer-Verlag, New York.
  5. Cheng, C.H., Yang, K.L., and Hwang, C.L. Evaluating attack helicopters by AHP based linguistic variable weight, European Journal of Operational Research, Vol. 116, 425-435.
  6. Easa, S.M. Urban transportation in practice I: conventional analysis, Journal of Transportation Engineering, ASCE, Vol. 119, No. 6, 793-815.
  7. Easa, S.M. Urban transportation in practice II: quick response and special topics, Journal of Transportation Engineering, ASCE, Vol. 119, No. 6, 816-834.
  8. Hwang, C.L., and Yoon, K. Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag.
  9. Hyman, G.M. The calibration of trip distribution models, Environment and Planning, Vol. 1, No. 3, 105-112.
  10. Gomes, L.F.A.M. Multicriteria ranking of urban transportation system alternatives, Journal of Advanced Transportation, Vol. 23, No. 1, 43-52.
  11. Klungboonkrong, P. and Taylor, M.A.P. An integrated planning tool for evaluating road environmental impacts, Journal of Computer-Aided Civil and Infrastructure Engineering, Vol. 14, 335-345.
  12. Lundqvist, L. and Mattson, L.G. National transport models: Introduction and comparative analysis, in Lundqvist, L. and Mattson, L.G. (eds), National Transport Model: Recent developments and Prospects. Springer, Berlin, Germany.
  13. Oppenheim. N. Urban Travel Demand Modelling: From Individual Choice to General Equilibrium. John Wiley & Sons, USA.
  14. Ortuzar, J de D. and Willumsen, L.G. Modelling Transport (2nd ed.). John Wiley & Sons, England.
  15. Quandt, R. and Baumol, W. The demand for abstract transport modes: theory and Measurement, Journal of Regional Science, Vol. 6, No. 2, 13-26.
  16. Reddy, K.H., and Chakroborty, P. A fuzzy inference based assignment algorithm to estimate O-D matrix from link volume counts, Comput., Environ. and Urban Systems, Vol. 22, No. 5, 409-423.
  17. Ridwan, M. Fuzzy preference based traffic assignment problem. Paper accepted for presentation in the International Workshop on Intelligent Transport System, Adelaide, 19 July 2002.
  18. Taylor, M.A.P., Young, W. and Bonsall, P.W. Understanding Traffic System: Data, Analysis and Presentation. Avebury Technical Books, England.
  19. Wirasinghe, S.C. and Kumarage, A.S. An aggregate demand model for intercity passenger travel in Sri Lanka, Transportation, Vol. 25, 77-98.
  20. Yeh, C.H., Deng, H., and Chang, Y.H. Fuzzy multiple attribute decision making for performance evaluation of bus companies, European Journal of Operational Research, Vol. 126, 459-473.
  21. Zimmerman, H.J. Fuzzy Sets Theory and Its Application. Kluwer Academic, Boston.
  22. Україна в цифрах 2008 // Статистичний збірник. – К.: ДП «Інформаційно-аналітичне агентство», 2009. – 260 с.
  23. Регіони України // Статистичний збірник. – К.: ДП «Інформаційно-аналітичне агентство», 2009. – 369 с.

##submission.downloads##

Як цитувати

Білоус, А. Б., & Могила, І. А. (2012). Багатофакторний нечіткий аналіз для моделювання попиту на перевезення до туристичних міст. Eastern-European Journal of Enterprise Technologies, 1(4(49), 32–38. https://doi.org/10.15587/1729-4061.2011.1910

Номер

Розділ

Математика та кібернетика - прикладні аспекти