Розробка енергоефективних та екологічно безпечних технологій виробницива кавопродуктів
DOI:
https://doi.org/10.15587/1729-4061.2020.194647Ключові слова:
харчові концентрати, масло кави, кавовий шлам, мікрохвильове екстрагування, енергетичний моніторингАнотація
На основі енергетичного й екологічного аудиту проведено аналіз матеріальних потоків, конверсії енергії, викидів в атмосферу й літосферу при виробництві розчинної кави.
Для підвищення енергоефективності, зниження екологічного навантаження розроблені інноваційні технологічні схеми й устаткування по переробці відходів і виробництву нових кавових продуктів.
Проведено експериментальне моделювання: кінетики мікрохвильового екстрагування водорозчинних речовин і масла з кавового шламу; гідравліки плину экстрагента через касети мікрохвильового екстрактора. Експериментальні дані узагальнені у вигляді критериального рівняння.
У результаті експериментального моделювання кінетики екстрагування встановлено, що тривалість процесу в мікрохвильовому полі приблизно в 20 разів менше, ніж у термостаті. Дія мікрохвильового поля впливає на швидкість екстрагування більшою мірою, чим температура процесу. Підвищення потужності мікрохвильової енергії підвищує вихід екстрактивних речовин з кавового шламу більш ніж у два рази.
Визначено технічні характеристики мікрохвильового екстрактора масла. Випробування зразка екстрактора проводилися при питомій потужності 180…240 Вт/кг у режимі кипіння екстрагенту. У якості екстрагенту використовувався етанол (концентрація 93...96 %). У результаті випробувань отримане якісне кавове масло, що характеризується вираженим ароматом і смаком кави й інтенсивним темно-коричневим фарбуванням.
Розроблено технологічну схему передекстрагування кави зі шламу. Додатковий витяг зі шламу кави водорозчинних екстрактивних речовин, підвищує вихід екстракту на 10...12 %. Істотно знижено температурний режим екстрагування, зменшені тривалість і енергоємність процесу.
Розроблено інноваційну технологічну схему виробництва рідкого концентрату кави – основи для напоїв на базі кави, готових до безпосереднього вживання. Концентрація сухих речовин становить 50...65 %Посилання
- Clapp, J., Newell, P., Brent, Z. W. (2017). The global political economy of climate change, agriculture and food systems. The Journal of Peasant Studies, 45 (1), 80–88. doi: https://doi.org/10.1080/03066150.2017.1381602
- Govindan, K. (2018). Sustainable consumption and production in the food supply chain: A conceptual framework. International Journal of Production Economics, 195, 419–431. doi: https://doi.org/10.1016/j.ijpe.2017.03.003
- Huang, M., Zhang, M. (2013). Tea and coffee powders. Handbook of Food Powders, 513–531. doi: https://doi.org/10.1533/9780857098672.3.513
- Burdo, O. G., Terziev, S. G., Ruzhitskaya, N. V., Makievskaya, T. L. (2014). Protsessy pererabotki kofeynogo shlama. Kyiv: EnterPrint, 228.
- Terziev, S. G., Levtrinskaya, Yu. O., Burdo, O. G. (2015). Sovershenstvovanie teplotehnologiy proizvodstva kofe. Naukovi pratsi [Odeskoi natsionalnoi akademiyi kharchovykh tekhnolohiy], 2 (47), 81–87.
- Atabani, A. E., Al-Muhtaseb, A. H., Kumar, G., Saratale, G. D., Aslam, M., Khan, H. A. et. al. (2019). Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel, 254, 115640. doi: https://doi.org/10.1016/j.fuel.2019.115640
- Sarno, M., Iuliano, M. (2018). Active biocatalyst for biodiesel production from spent coffee ground. Bioresource Technology, 266, 431–438. doi: https://doi.org/10.1016/j.biortech.2018.06.108
- Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36 (2), 452–466. doi: https://doi.org/10.1016/j.biotechadv.2018.01.011
- Jeguirim, M., Limousy, L., Dutournie, P. (2014). Pyrolysis kinetics and physicochemical properties of agropellets produced from spent ground coffee blended with conventional biomass. Chemical Engineering Research and Design, 92 (10), 1876–1882. doi: https://doi.org/10.1016/j.cherd.2014.04.018
- Limousy, L., Jeguirim, M., Dutournié, P., Kraiem, N., Lajili, M., Said, R. (2013). Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel, 107, 323–329. doi: https://doi.org/10.1016/j.fuel.2012.10.019
- Javaid, A., Ryan, T., Berg, G., Pan, X., Vispute, T., Bhatia, S. R. et. al. (2010). Removal of char particles from fast pyrolysis bio-oil by microfiltration. Journal of Membrane Science, 363 (1-2), 120–127. doi: https://doi.org/10.1016/j.memsci.2010.07.021
- Edathil, A. A., Shittu, I., Hisham Zain, J., Banat, F., Haija, M. A. (2018). Novel magnetic coffee waste nanocomposite as effective bioadsorbent for Pb(II) removal from aqueous solutions. Journal of Environmental Chemical Engineering, 6 (2), 2390–2400. doi: https://doi.org/10.1016/j.jece.2018.03.041
- Kida, K., Ikbal, Sonoda, Y. (1992). Treatment of coffee waste by slurry-state anaerobic digestion. Journal of Fermentation and Bioengineering, 73 (5), 390–395. doi: https://doi.org/10.1016/0922-338x(92)90285-3
- Passos, C. P., Rudnitskaya, A., Neves, J. M. M. G. C., Lopes, G. R., Evtuguin, D. V., Coimbra, M. A. (2019). Structural features of spent coffee grounds water-soluble polysaccharides: Towards tailor-made microwave assisted extractions. Carbohydrate Polymers, 214, 53–61. doi: https://doi.org/10.1016/j.carbpol.2019.02.094
- Tsukui, A., Santos Júnior, H. M., Oigman, S. S., de Souza, R. O. M. A., Bizzo, H. R., Rezende, C. M. (2014). Microwave-assisted extraction of green coffee oil and quantification of diterpenes by HPLC. Food Chemistry, 164, 266–271. doi: https://doi.org/10.1016/j.foodchem.2014.05.039
- Pavlović, M. D., Buntić, A. V., Šiler-Marinković, S. S., Dimitrijević-Branković, S. I. (2013). Ethanol influenced fast microwave-assisted extraction for natural antioxidants obtaining from spent filter coffee. Separation and Purification Technology, 118, 503–510. doi: https://doi.org/10.1016/j.seppur.2013.07.035
- Ranic, M., Nikolic, M., Pavlovic, M., Buntic, A., Siler-Marinkovic, S., Dimitrijevic-Brankovic, S. (2014). Optimization of microwave-assisted extraction of natural antioxidants from spent espresso coffee grounds by response surface methodology. Journal of Cleaner Production, 80, 69–79. doi: https://doi.org/10.1016/j.jclepro.2014.05.060
- Oliveira, N. A. de, Cornelio-Santiago, H. P., Fukumasu, H., Oliveira, A. L. de. (2018). Green coffee extracts rich in diterpenes – Process optimization of pressurized liquid extraction using ethanol as solvent. Journal of Food Engineering, 224, 148–155. doi: https://doi.org/10.1016/j.jfoodeng.2017.12.021
- Araújo, M. N., Azevedo, A. Q. P. L., Hamerski, F., Voll, F. A. P., Corazza, M. L. (2019). Enhanced extraction of spent coffee grounds oil using high-pressure CO2 plus ethanol solvents. Industrial Crops and Products, 141, 111723. doi: https://doi.org/10.1016/j.indcrop.2019.111723
- Su, Y., Zhang, M., Zhang, W., Liu, C., Bhandari, B. (2017). Low oil content potato chips produced by infrared vacuum pre-drying and microwave-assisted vacuum frying. Drying Technology, 36 (3), 294–306. doi: https://doi.org/10.1080/07373937.2017.1326500
- Kumar, C., Karim, M. A. (2017). Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition, 59 (3), 379–394. doi: https://doi.org/10.1080/10408398.2017.1373269
- Burdo, O., Bezbakh, I., Kepin, N., Zykov, A., Yarovyi, I., Gavrilov, A. et. al. (2019). Studying the operation of innovative equipment for thermomechanical treatment and dehydration of food raw materials. Eastern-European Journal of Enterprise Technologies, 5 (11 (101)), 24–32. doi: https://doi.org/10.15587/1729-4061.2019.178937
- Burdo, O. G. (2008). Energeticheskiy monitoring pishchevyh proizvodstv. Odessa: Poligraf, 244.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Oleg Burdo, Oleg Burdo, Igor Bezbakh, Aleksandr Zykov, Sergey Terziev, Sergey Terziev, Aleksander Gavrilov, Aleksandr Zykov, Aleksander Gavrilov, Ilya Sirotyuk, Ilya Sirotyuk, Igor Mazurenko, Igor Mazurenko, Yunbo Li, Yunbo Li
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.