Визначення міцності і термо-, хімстійкості епоксидного полімер-композиту 15-80 мас % з наповненням базальтовою мікронано-фіброю
DOI:
https://doi.org/10.15587/1729-4061.2020.200491Ключові слова:
епоксидний полімер, мікронанобазальтова фібра, міцність, адгезія, стійкість до стирання, ацетон-етилацетатАнотація
Експериментально показана можливість отримувати композити з 15–80 мас % мікронанобазальтової фібри (МНБФ), що відрізняється рядом посилених міцності, вищої хімічною і вогнестійкістю. Показано, що при середніх концентраціях (до 15 %) властивості композиту незначно відрізняються від ненаполненного полімеру (Н-полімеру). Однак при 50 мас % і особливо 80 мас % спостерігаються серйозні зміни властивостей, що відображає глибока зміна морфології, що підтверджується СЕМ-мікроскопією.
Встановлено, що введення мікробазальта здатне підняти міцність при стисненні до 10 % (при похибки вимірювань менше 5 %), і лише при дуже високому наповненні в 80 мас %. Зміцнення дії мікробазальта виражається в зростанні навантаження стиснення витриманого у воді композиту і його модуля пружності до 6–12 %. Визначено, що падіння міцності при вигині (приблизно в 2 рази) після наповнення – тенденція, характерна практично для багатьох наповнювачів епоксидної смоли. Базальтова фібра не стала винятком. Винятком закономірно виглядають лише зразки з базальто-ровінгом, що нарощують міцність при вигині. Разом з тим, при високому наповненні (але не при 15 мас %) виявлено майже подвійне зростання модуля при вигині, – вище ніж для композиту з ровінгом, що дуже важливо з практичної точки зору. Наповнення мікробазальтом сприяє зниженню швидкості і ступеня набухання в 35 % Н2О2 – тим активніше, чим вище відсоток наповнення. Візуально вони мають ознаки окислення перекисом (біліють), проте суттєвої деструкції (як в ацетоні) не виявляють. Отримано криві, що дозволяють оцінити ступінь набухання полімеру. Крім того, досліджено характер набухання композитів з високим ступенем наповнення – 50 і 80 мас %. Отримані результати дозволили зробити висновок про ступінь ущільнення структури композиту і зростання стійкості його до агресивних середовищ за рахунок збільшення частки неорганічної фази
Посилання
- Gorelov, B., Gorb, A., Nadtochiy, A., Starokadomsky, D., Kuryliuk, V., Sigareva, N. et. al. (2019). Epoxy filled with bare and oxidized multi-layered graphene nanoplatelets: a comparative study of filler loading impact on thermal properties. Journal of Materials Science, 54 (12), 9247–9266. doi: https://doi.org/10.1007/s10853-019-03523-7
- Starokadomsky, D. (2019). Epoxy Composites Reinforced with Bazaltfibre Filled for Osteo-, Paleo-Prostheses and External Implants. Biomedical Journal of Scientific & Technical Research, 18 (1). doi: https://doi.org/10.26717/bjstr.2019.18.003092
- Danchenko, Y., Bykov, R., Kachomanova, M., Obizhenko, T., Belous, N., Antonov, A. (2013). Environmentally friendly epoxyamine filled compositions curing under the low temperatures. Eastern-European Journal of Enterprise Technologies, 6 (10 (66)), 9–12. doi: https://doi.org/10.15587/1729-4061.2013.19165
- Starokadomskii, D. L., Solov’eva, T. N. (2002). Effect of silicon oxide fillers on photochemical curing of compounds based on acrylic monomers and oligomers. Russian Journal of Applied Chemistry, 75, 138–141. doi: https://doi.org/10.1023/A:1015597713736
- Starokadomskii, D. L. (2008). Effect of nanodispersed silica (Aerosil) on the thermal and chemical resistance of photocurable polyacrylate compounds. Russian Journal of Applied Chemistry, 81 (12), 2155–2161. doi: https://doi.org/10.1134/s1070427208120227
- Starokadomsky, D. L., Ischenko, A. A., Rassokhin, D. A., Reshetnyk, M. N. (2019). Epoxy composites for equipment repair with 50 wt% silicon carbide, titanium nitride, cement, gypsum: effects of heat strengthening, strength/durability, morphology, comparison with european commercial analogues. Kompozity i nanostruktury, 11 (2), 85–93. Available at: https://www.elibrary.ru/item.asp?id=40101991
- Starokadomskii, D. L. (2017). Epoxy composites with 10 and 50 wt % micronanoiron: strength, microstructure, and chemical and thermal resistance. Russian Journal of Applied Chemistry, 90 (8), 1337–1345. doi: https://doi.org/10.1134/s1070427217080249
- Brailo, M., Buketov, A., Yakushchenko, S., Sapronov, O., Vynar, V., Kobelnik, O. (2018). The Investigation of Tribological Properties of Epoxy-Polyether Composite Materials for Using in the Friction Units of Means of Sea Transport. Materials Performance and Characterization, 7 (1), 275–299. doi: https://doi.org/10.1520/mpc20170161
- Staroadomskyk, D. L. (2019). Possibilities of creating fire-resistant, thermo-hardening and thermoplastic at 250 °С epoxy-composite plastics with micro dispersions of SiC, TiN and cement. Plasticheskie massy, 5-6, 40–43. doi: https://doi.org/10.35164/0554-2901-2019-5-6-40-43
- Bulut, M. (2017). Mechanical characterization of Basalt/epoxy composite laminates containing graphene nanopellets. Composites Part B: Engineering, 122, 71–78. doi: https://doi.org/10.1016/j.compositesb.2017.04.013
- Lapena, M. H., Marinucci, G. (2017). Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube. Materials Research, 21 (1). doi: https://doi.org/10.1590/1980-5373-mr-2017-0324
- Ulegin, S. V., Kadykova, Y. A., Artemenko, S. E., Demidova, S. A. (2014). Basalt-Filled Epoxy Composite Materials. International Polymer Science and Technology, 41 (5), 57–60. doi: https://doi.org/10.1177/0307174x1404100513
- Wu, G., Dong, Z.-Q., Wang, X., Zhu, Y., Wu, Z.-S. (2015). Prediction of Long-Term Performance and Durability of BFRP Bars under the Combined Effect of Sustained Load and Corrosive Solutions. Journal of Composites for Construction, 19 (3), 04014058. doi: https://doi.org/10.1061/(asce)cc.1943-5614.0000517
- Danchenko, Y., Andronov, V., Barabash, E., Obigenko, T., Rybka, E., Meleshchenko, R., Romin, A. (2017). Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 4–12. doi: https://doi.org/10.15587/1729-4061.2017.118565
- Alexander, J., Augustine, B. S. M., Prudhuvi, S., Paudel, A. (2016). Hygrothermal effect on natural frequency and damping characteristics of basalt/epoxy composites. Materials Today: Proceedings, 3 (6), 1666–1671. doi: https://doi.org/10.1016/j.matpr.2016.04.057
- Mahesha, C. R., Shivarudraiah, Mohan, N., Rajesh, M. (2017). Role of Nanofillers on Mechanical and Dry sliding Wear Behavior of Basalt- Epoxy Nanocomposites. Materials Today: Proceedings, 4 (8), 8192–8199. doi: https://doi.org/10.1016/j.matpr.2017.07.161
- Ricciardi, M. R., Papa, I., Lopresto, V., Langella, A., Antonucci, V. (2019). Effect of hybridization on the impact properties of flax/basalt epoxy composites: Influence of the stacking sequence. Composite Structures, 214, 476–485. doi: https://doi.org/10.1016/j.compstruct.2019.01.087
- Ary Subagia, I. D. G., Tijing, L. D., Kim, Y., Kim, C. S., Vista IV, F. P., Shon, H. K. (2014). Mechanical performance of multiscale basalt fiber–epoxy laminates containing tourmaline micro/nano particles. Composites Part B: Engineering, 58, 611–617. doi: https://doi.org/10.1016/j.compositesb.2013.10.034
- Kim, D., Mittal, G., Kim, M., Kim, S., Yop Rhee, K. (2019). Surface modification of MMT and its effect on fatigue and fracture behavior of basalt/epoxy based composites in a seawater environment. Applied Surface Science, 473, 55–58. doi: https://doi.org/10.1016/j.apsusc.2018.12.127
- Lee, S.-O., Choi, S.-H., Kwon, S. H., Rhee, K.-Y., Park, S.-J. (2015). Modification of surface functionality of multi-walled carbon nanotubes on fracture toughness of basalt fiber-reinforced composites. Composites Part B: Engineering, 79, 47–52. doi: https://doi.org/10.1016/j.compositesb.2015.03.077
- Lee, J. H., Rhee, K. Y., Park, S. J. (2010). The tensile and thermal properties of modified CNT-reinforced basalt/epoxy composites. Materials Science and Engineering: A, 527 (26), 6838–6843. doi: https://doi.org/10.1016/j.msea.2010.07.080
- Mostovoy, A. S., Kadykova, Y. A., Bekeshev, A. Z., Tastanova, L. K. (2018). Epoxy composites modified with microfibers of potassium polytitanates. Journal of Applied Polymer Science, 135 (35), 46651. doi: https://doi.org/10.1002/app.46651
- Mostovoy, A. S., Nurtazina, A. S., Burmistrov, I. N., Kadykova, Y. A. (2018). Effect of Finely Dispersed Chromite on the Physicochemical and Mechanical Properties of Modified Epoxy Composites. Russian Journal of Applied Chemistry, 91 (11), 1758–1766. doi: https://doi.org/10.1134/s1070427218110046
- Biswas, S., Shahinur, S., Hasan, M., Ahsan, Q. (2015). Physical, Mechanical and Thermal Properties of Jute and Bamboo Fiber Reinforced Unidirectional Epoxy Composites. Procedia Engineering, 105, 933–939. doi: https://doi.org/10.1016/j.proeng.2015.05.118
- Zuev, Yu. S. (1972). Razrushenie polimerov pod deystviem agressivnyh sred. Moscow: Himiya, 232. Available at: https://www.twirpx.com/file/279819/
- Starokadomskii, D. L. (2008). Effect of the content of unmodified nanosilica with varied specific surface area on physicomechanical properties and swelling of epoxy composites. Russian Journal of Applied Chemistry, 81 (11), 1987–1991. doi: https://doi.org/10.1134/s1070427208110232
- Starokadomsky, D. (2017). Filling with the Graphene Nanoplates as a Way to Improve Properties of Epoxy-Composites for Industrial and Geophysical Machinery. American Journal of Physics and Applications, 5 (6), 120. doi: https://doi.org/10.11648/j.ajpa.20170506.19
- Ullegaddi, K., Shivarudraiah, Mahesha, C. R. (2019). Significance of Tungsten Carbide Filler Reinforcement on Ultimate Tensile Strength of Basalt Fiber Epoxy Composites. International Journal of Recent Technology and Engineering, 8 (3), 7913–7916. doi: https://doi.org/10.35940/ijrte.c6617.098319
- Sharma, V., Meena, M. L., Kumar, M. (2020). Effect of filler percentage on physical and mechanical characteristics of basalt fiber reinforced epoxy based composites. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2020.02.533
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Dmitry Rassokhin, Dmitro Starokadomsky, Anatoly Ishchenko, Oleksandr Tkachenko, Maria Reshetnyk, Lyudmyla Kоkhtych
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.