Development of a dummy guided formulation and exact solution method for TSP
DOI:
https://doi.org/10.15587/1729-4061.2020.203865Ключові слова:
traveling salesman problem, sub-tour, block, integer linear program, dummy.Анотація
A traveling salesman problem (TSP) is a problem whereby the salesman starts from an origin node and returns to it in such a way that every node in the network of nodes is visited once and that the total distance travelled is minimized. An efficient algorithm for the TSP is believed not to exist. The TSP is classified as NP-hard and coming up with an efficient solution for it will imply NP=P. The paper presents a dummy guided formulation for the traveling salesman problem. To do this, all sub-tours in a traveling salesman problem (TSP) network are eliminated using the minimum number of constraints possible. Since a minimum of three nodes are required to form a sub-tour, the TSP network is partitioned by means of vertical and horizontal lines in such a way that there are no more than three nodes between either the vertical lines or horizontal lines. In this paper, a set of all nodes between any pair of vertical lines or horizontal lines is called a block. Dummy nodes are used to connect one block to the next one. The reconstructed TSP is then used to formulate the TSP as an integer linear programming problem (ILP). With branching related algorithms, there is no guarantee that numbers of sub-problems will not explode to unmanageable levels. Heuristics or approximating algorithms that are sometimes used to make quick decisions for practical TSP models have serious economic challenges. The difference between the exact solution and the approximated one in terms of money is very big for practical problems such as delivering household letters using a single vehicle in Beijing, Tokyo, Washington, etc. The TSP model has many industrial applications such as drilling of printed circuit boards (PCBs), overhauling of gas turbine engines, X-Ray crystallography, computer wiring, order-picking problem in warehouses, vehicle routing, mask plotting in PCB production, etc.
Посилання
- Munapo, E. (2020). Network Reconstruction – A New Approach to the Traveling Salesman Problem and Complexity. Intelligent Computing and Optimization, 260–272. doi: https://doi.org/10.1007/978-3-030-33585-4_26
- Baniasadi, P., Foumani, M., Smith-Miles, K., Ejov, V. (2020). A transformation technique for the clustered generalized traveling salesman problem with applications to logistics. European Journal of Operational Research, 285 (2), 444–457. doi: https://doi.org/10.1016/j.ejor.2020.01.053
- Hougardy, S., Zaiser, F., Zhong, X. (2020). The approximation ratio of the 2-Opt Heuristic for the metric Traveling Salesman Problem. Operations Research Letters, 48 (4), 401–404. doi: https://doi.org/10.1016/j.orl.2020.05.007
- Campuzano, G., Obreque, C., Aguayo, M. M. (2020). Accelerating the Miller–Tucker–Zemlin model for the asymmetric traveling salesman problem. Expert Systems with Applications, 148, 113229. doi: https://doi.org/10.1016/j.eswa.2020.113229
- Fischetti, M., Salazar González, J. J., Toth, P. (1997). A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem. Operations Research, 45 (3), 378–394. doi: https://doi.org/10.1287/opre.45.3.378
- Ebadinezhad, S. (2020). DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem. Engineering Applications of Artificial Intelligence, 92, 103649. doi: https://doi.org/10.1016/j.engappai.2020.103649
- Wang, S., Liu, M., Chu, F. (2020). Approximate and exact algorithms for an energy minimization traveling salesman problem. Journal of Cleaner Production, 249, 119433. doi: https://doi.org/10.1016/j.jclepro.2019.119433
- Rebman, K. R. (1974). Total unimodularity and the transportation problem: a generalization. Linear Algebra and Its Applications, 8 (1), 11–24. doi: https://doi.org/10.1016/0024-3795(74)90003-2
- Munapo, E. (2016). Second Proof That P=NP. 5th EngOpt Conference.
- Winston, W. L., Goldberg, J. B. (2004). Operations research: Applications and algorithms. Belmont, CA: Thomson Brooks/Cole.
- Gondzio, J. (2012). Interior point methods 25 years later. European Journal of Operational Research, 218 (3), 587–601. doi: https://doi.org/10.1016/j.ejor.2011.09.017
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Elias Munapo
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.