Підвищення енергетичних показників зарядної станції електромобілів на базі трирівневого активного випрямляча

Автор(и)

  • Oleksandr Plakhtii Конструкторське бюро ТОВ «ВО ОВЕН» вул. Гвардійців-Широнівців, 3А, м. Харків, Україна, 61153, Україна https://orcid.org/0000-0002-1535-8991
  • Volodymyr Nerubatskyi Український державний університет залізничного транспорту майдан Фейєрбаха, 7, м. Харків, Україна, 61050, Україна https://orcid.org/0000-0002-4309-601X
  • Artem Mashura Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-6016-7801
  • Denys Hordiienko Український державний університет залізничного транспорту майдан Фейєрбаха, 7, м. Харків, Україна, 61050, Україна https://orcid.org/0000-0002-0347-5656
  • Hryhorii Khoruzhevskyi Конструкторське бюро ТОВ «ВО ОВЕН» вул. Гвардійців-Широнівців, 3А, м. Харків, Україна, 61153, Україна https://orcid.org/0000-0003-2042-4938

DOI:

https://doi.org/10.15587/1729-4061.2020.204068

Ключові слова:

активний випрямляч, акумуляторна батарея, зарядна станція електромобіля, коефіцієнт потужності, моделювання

Анотація

Запропоновано нову структуру зарядної станції для електромобілів, що розроблена на базі трифазного трансформатора та трирівневого активного чотириквадрантного випрямляча з корекцією коефіцієнта потужності. Описано параметри запропонованої структури зарядної станції, представлено параметри схеми заміщення акумуляторного відсіку електромобіля Tesla model S, яку приведено до однієї еквівалентної батареї. Описано метод швидкого заряду батареї постійним струмом і постійною напругою CC-CV, при якому забезпечується більша кількість циклів заряду-розряду батареї. Наведено математичні формули для розрахунку складових втрат потужності і ККД запропонованої структури зарядної станції на інтервалі повного заряду батареї.

Представлено систему автоматичного регулювання струму та напруги заряду, яку засновано на широтно-імпульсній модуляції другого роду та інтегральному регуляторі. Представлено імітаційну модель запропонованої структури зарядної станції в програмному середовищі Matlab/Simulink, а також приведено результати моделювання: осцилограми вхідних та вихідних струмів і напруг, наведено динаміку роботи регулятора струму заряду. Шляхом поліноміальної апроксимації енергетичних характеристик IGBT-модулів для розрахунку статичних та динамічних втрат в силових ключах активного випрямляча було створено модель розраховувача втрат.

Показано, що при збільшенні значення струму заряду в режимі СС результуюче інтегральне значення ККД процесу заряду знижується, проте у той же час збільшується коефіцієнт потужності та знижується емісія вищих гармонік. Виконано оптимізацію втрат потужності в запропонованій системі зарядної станції за параметрами мінімуму струму заряду та частоти модуляції в ШІМ.

Виконаний аналіз складових енергії втрат в запропонованій структурі підтвердив її енергоефективність в порівнянні з іншими існуючими структурами. Перевагою запропонованої структури є те, що вона забезпечує покращені показники ККД, коефіцієнту потужності та зниження емісії вищих гармонік струму. Отримані такі показники системи: інтегральне значення ККД повного процесу заряду електромобіля методом CC-CV 95.6 %, коефіцієнт потужності 0.99, коефіцієнт гармонічних спотворень вхідного струму 2.5 %

Біографії авторів

Oleksandr Plakhtii, Конструкторське бюро ТОВ «ВО ОВЕН» вул. Гвардійців-Широнівців, 3А, м. Харків, Україна, 61153

Кандидат технічних наук, інженер-електронік

Volodymyr Nerubatskyi, Український державний університет залізничного транспорту майдан Фейєрбаха, 7, м. Харків, Україна, 61050

Кандидат технічних наук, доцент

Кафедра електроенергетики, електротехніки та електромеханіки

Artem Mashura, Національний технічний університет «Харківський політехнічний інститут» вул. Кирпичова, 2, м. Харків, Україна, 61002

Аспірант

Кафедра промислової та біомедичної електроніки

Denys Hordiienko, Український державний університет залізничного транспорту майдан Фейєрбаха, 7, м. Харків, Україна, 61050

Аспірант

Кафедра електроенергетики, електротехніки та електромеханіки

Hryhorii Khoruzhevskyi, Конструкторське бюро ТОВ «ВО ОВЕН» вул. Гвардійців-Широнівців, 3А, м. Харків, Україна, 61153

Інженер-конструктор

Посилання

  1. Weiss, M., Zerfass, A., Helmers, E. (2019). Fully electric and plug-in hybrid cars - An analysis of learning rates, user costs, and costs for mitigating CO2 and air pollutant emissions. Journal of Cleaner Production, 212, 1478–1489. doi: https://doi.org/10.1016/j.jclepro.2018.12.019
  2. Dai, P., Guo, G., Gong, Z. (2016). A Selection Precharge Method for Modular Multilevel Converter. International Journal of Control and Automation, 9 (4), 161–170. doi: https://doi.org/10.14257/ijca.2016.9.4.16
  3. Haq, G., Weiss, M. (2018). Time preference and consumer discount rates - Insights for accelerating the adoption of efficient energy and transport technologies. Technological Forecasting and Social Change, 137, 76–88. doi: https://doi.org/10.1016/j.techfore.2018.06.045
  4. Hardman, S., Chandan, A., Tal, G., Turrentine, T. (2017). The effectiveness of financial purchase incentives for battery electric vehicles – A review of the evidence. Renewable and Sustainable Energy Reviews, 80, 1100–1111. doi: https://doi.org/10.1016/j.rser.2017.05.255
  5. Lévay, P. Z., Drossinos, Y., Thiel, C. (2017). The effect of fiscal incentives on market penetration of electric vehicles: A pairwise comparison of total cost of ownership. Energy Policy, 105, 524–533. doi: https://doi.org/10.1016/j.enpol.2017.02.054
  6. Luo, S., Wang, Q., Lu, S. (2019). A Novel Efficient Electric Vehicle Fast Charging System Structure with Low Order Harmonic Current Suppression Capability. 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA). doi: https://doi.org/10.1109/iciea.2019.8834146
  7. Lee, W.-S., Kim, J.-H., Lee, J.-Y., Lee, I.-O. (2019). Design of an Isolated DC/DC Topology With High Efficiency of Over 97% for EV Fast Chargers. IEEE Transactions on Vehicular Technology, 68 (12), 11725–11737. doi: https://doi.org/10.1109/tvt.2019.2949080
  8. Helmers, E., Weiss, M. (2017). Advances and critical aspects in the life-cycle assessment of battery electric cars. Energy and Emission Control Technologies, 5, 1–18. doi: https://doi.org/10.2147/eect.s60408
  9. Deng, F., Chen, Z. (2015). Voltage-Balancing Method for Modular Multilevel Converters Switched at Grid Frequency. IEEE Transactions on Industrial Electronics, 62 (5), 2835–2847. doi: https://doi.org/10.1109/tie.2014.2362881
  10. Plakhtii, O., Nerubatskyi, V., Sushko, D., Ryshchenko, I., Tsybulnyk, V., Hordiienko, D. (2019). Improving energy characteristics of ac electric rolling stock by using the three-level active four-quadrant rectifiers. Eastern-European Journal of Enterprise Technologies, 4 (8 (100)), 6–14. doi: https://doi.org/10.15587/1729-4061.2019.174112
  11. Shruti, K. K., Valsalan, T., Poorani, S. (2017). Single phase active front end rectifier system employed in three phase variable frequency drive. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 121–129. Available at: https://ijireeice.com/wp-content/uploads/2017/05/IJIREEICE-nCORETech-16.pdf
  12. Islam, M. M., Shareef, H., Mohamed, A. (2018). Optimal location and sizing of fast charging stations for electric vehicles by incorporating traffic and power networks. IET Intelligent Transport Systems, 12 (8), 947–957. doi: https://doi.org/10.1049/iet-its.2018.5136
  13. Vasiladiotis, M., Rufer, A. (2015). A Modular Multiport Power Electronic Transformer With Integrated Split Battery Energy Storage for Versatile Ultrafast EV Charging Stations. IEEE Transactions on Industrial Electronics, 62 (5), 3213–3222. doi: https://doi.org/10.1109/tie.2014.2367237
  14. Bodo, N., Levi, E., Subotic, I., Espina, J., Empringham, L., Johnson, C. M. (2017). Efficiency Evaluation of Fully Integrated On-Board EV Battery Chargers With Nine-Phase Machines. IEEE Transactions on Energy Conversion, 32 (1), 257–266. doi: https://doi.org/10.1109/tec.2016.2606657
  15. Huang, Z., Wong, S.-C., Tse, C. K. (2017). Design of a Single-Stage Inductive-Power-Transfer Converter for Efficient EV Battery Charging. IEEE Transactions on Vehicular Technology, 66 (7), 5808–5821. doi: https://doi.org/10.1109/tvt.2016.2631596
  16. Kim, D.-H., Kim, M.-J., Lee, B.-K. (2017). An Integrated Battery Charger With High Power Density and Efficiency for Electric Vehicles. IEEE Transactions on Power Electronics, 32 (6), 4553–4565. doi: https://doi.org/10.1109/tpel.2016.2604404
  17. Taylor, A., Lu, J., Zhu, L., Bai, K. (Hua), McAmmond, M., Brown, A. (2018). Comparison of SiC MOSFET-based and GaN HEMT-based high-efficiency high-power-density 7.2 kW EV battery chargers. IET Power Electronics, 11 (11), 1849–1857. doi: https://doi.org/10.1049/iet-pel.2017.0467
  18. Kwon, M., Jung, S., Choi, S. (2015). A high efficiency bi-directional EV charger with seamless mode transfer for V2G and V2H application. 2015 IEEE Energy Conversion Congress and Exposition (ECCE). doi: https://doi.org/10.1109/ecce.2015.7310418
  19. Srdic, S., Lukic, S. (2019). Toward Extreme Fast Charging: Challenges and Opportunities in Directly Connecting to Medium-Voltage Line. IEEE Electrification Magazine, 7 (1), 22–31. doi: https://doi.org/10.1109/mele.2018.2889547
  20. Kumari, B., Sankar, M. (2014). Modeling and individual voltage balancing control of modular multilevel cascade converter. International Journal of Emerging Engineering Research and Technology, 2 (1), 42–48.
  21. Nerubatskyi, V., Plakhtii, O., Hordiienko, D., Khoruzhevskyi, H. (2019). Simulation of surge protection according IEC 61000-4-5. International scientific journal «Industry 4.0», 4 (6), 293–296.
  22. Venkatramanan, D., Bharadwaj, P., Adapa, A. K., John, V. (2019). Power Conversion Technologies for High-Performance AC Micro-grid. INAE Letters, 4 (1), 27–35. doi: https://doi.org/10.1007/s41403-018-00062-6
  23. Martinez-Rodrigo, F., Ramirez, D., Rey-Boue, A., de Pablo, S., Herrero-de Lucas, L. (2017). Modular Multilevel Converters: Control and Applications. Energies, 10 (11), 1709. doi: https://doi.org/10.3390/en10111709
  24. Nerubatskyi, V. P., Plakhtii, O. A., Karpenko, N. P., Hordiienko, D. A., Tsybulnyk, V. R. (2019). Analysis of energy processes in a seven-level autonomous voltage inverter at various modulation algorithms. Information and control systems on railway transport, 5, 8–18. doi: https://doi.org/10.18664/ikszt.v24i5.181286
  25. Mali, S. M., Patil, B. G. (2018). THD Minimization in Multilevel Inverter Using Optimization Approach. International Journal of Engineering Research & Technology (IJERT), 7 (6), 97–100.
  26. Sonia, K., Seshadri, G. (2015). Analysis and modelling of a multilevel inverter in distribution system with FACTS capability. International Journal of Innovative Research in Science, Engineering and Technology, 4 (5), 3015–3021.
  27. Aghdam, M., Fathi, S., Gharehpetian, G. B. (2008). Harmonic Optimization Techniques in Multi-Level Voltage-Source Inverter with Unequal DC Sources. Journal of Power Electronics, 8 (2), 171–180.
  28. Kurwale, M. V., Sharma, P. G., Bacher, G. (2014). Performance analysis of modular multilevel converter (MMC) with continuous and discontinuous pulse width modulation (PWM). International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3 (2), 7463–7474. Available at: https://pdfs.semanticscholar.org/d351/b7b2b80426065468fd39c8d746f70fee1296.pdf
  29. Plakhtii, O., Nerubatskyi, V., Karpenko, N., Hordiienko, D., Butova, O., Khoruzhevskyi, H. (2019). Research into energy characteristics of single-phase active four-quadrant rectifiers with the improved hysteresis modulation. Eastern-European Journal of Enterprise Technologies, 5 (8 (101)), 36–44. doi: https://doi.org/10.15587/1729-4061.2019.179205
  30. Zhou J., Suand J., Wang X. (2014). Pre-charging control of modular multilevel converter. High Voltage Apparatus, 50 (4), 103–107.
  31. Solas, E., Abad, G., Barrena, J. A., Aurtenetxea, S., Carcar, A., Zajac, L. (2013). Modular Multilevel Converter With Different Submodule Concepts – Part I: Capacitor Voltage Balancing Method. IEEE Transactions on Industrial Electronics, 60 (10), 4525–4535. doi: https://doi.org/10.1109/tie.2012.2210378
  32. Plakhtii, O. A., Nerubatskyi, V. P., Hordiienko, D. A., Tsybulnyk, V. R. (2019). Analysis of the energy efficiency of a two-level voltage source inverter in the overmodulation mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4 (172), 68–72. doi: https://doi.org/10.29202/nvngu/2019-4/9
  33. Yang, H., Saeedifard, M. (2017). A Capacitor Voltage Balancing Strategy With Minimized AC Circulating Current for the DC–DC Modular Multilevel Converter. IEEE Transactions on Industrial Electronics, 64 (2), 956–965. doi: https://doi.org/10.1109/tie.2016.2613059
  34. Plakhtii, O., Nerubatskyi, V., Sushko, D., Hordiienko, D., Khoruzhevskyi, H. (2020). Improving the harmonic composition of output voltage in multilevel inverters under an optimum mode of amplitude modulation. Eastern-European Journal of Enterprise Technologies, 2 (8 (104)), 17–24. doi: https://doi.org/10.15587/1729-4061.2020.200021
  35. Kelrykh, М., Fomin, О. (2014). Perspective directions of planning carrying systems of gondolas. Metallurgical and Mining Industry, 6, 64–67.
  36. Plakhtii, O., Nerubatskyi, V., Karpenko, N., Ananieva, O., Khoruzhevskyi, H., Kavun, V. (2019). Studying a voltage stabilization algorithm in the cells of a modular six­level inverter. Eastern-European Journal of Enterprise Technologies, 6 (8 (102)), 19–27. doi: https://doi.org/10.15587/1729-4061.2019.185404
  37. Korneliuk, S., Dmitriev, P., Tugay, D. (2019). Empirical support of the mathematical model of the wind turbine WPI. Lighting Engineering & Power Engineering, 2 (55), 68–72. doi: https://doi.org/10.33042/2079-424x-2019-2-55-68-72
  38. Bashir, S. B., Beig, A. R. (2018). An improved voltage balancing algorithm for grid connected MMC for medium voltage energy conversion. International Journal of Electrical Power & Energy Systems, 95, 550–560. doi: https://doi.org/10.1016/j.ijepes.2017.09.002
  39. Plakhtii, O. A., Nerubatskyi, V. P., Kavun, V. Y., Hordiienko, D. A. (2019). Active single-phase four-quadrant rectifier with improved hysteresis modulation algorithm. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 93–98. doi: https://doi.org/10.29202/nvngu/2019-5/16
  40. Scherback, Y. V., Plakhtiy, O. A., Nerubatskiy, V. P. (2017). Control characteristics of active four-quadrant converter in rectifier and recovery mode. Tekhnichna Elektrodynamika, 6, 26–31. doi: https://doi.org/10.15407/techned2017.06.026
  41. Zhemerov, G. G., Krylov, D. S. (2018). Concept of construction of power circuits of a multilevel modular converter and its transistor modules. Electrical Engineering & Electromechanics, 6, 26–32. doi: https://doi.org/10.20998/2074-272x.2018.6.03
  42. Franco, V., Zacharopoulou, T., Hammer, J., Schmidt, H., Mock, P., Weiss, M., Samaras, Z. (2016). Evaluation of Exhaust Emissions from Three Diesel-Hybrid Cars and Simulation of After-Treatment Systems for Ultralow Real-World NOx Emissions. Environmental Science & Technology, 50 (23), 13151–13159. doi: https://doi.org/10.1021/acs.est.6b03585
  43. Nerubatskyi, V., Plakhtii, O., Kotlyarov, V. (2019). Analysis of topologies of active four-quadrant rectifiers for implementing the INDUSTRY 4.0 principles in traffic power supply systems. International scientific journal «Industry 4.0», 4 (3), 106–109.
  44. Plakhtii, O., Nerubatskyi, V., Philipjeva, M., Mashura, A. (2019). Research of mathematical models of lithium-ion storages. International scientific journal «Mathematical modeling», 3 (4), 127–130.
  45. Tugay, D., Sayenko, Y., Kolontaevsky, Y., Shkurpela, A. (2019). Distributed solar photovoltaic power station conversion system with power filtration function. International Ukraine-Poland Seminar «Power quality in distribution networks with distributed generation», 131–138. doi: http://doi.org/10.32073/iepl.2019.15
  46. Plakhtii, O. A., Nerubatskyi, V. P., Kavun,, A. M., Mashura, A. V. (2018). Compensation of input current harmonics in parallel multiple voltage sourse inverters. Electrical and computer systems, 27 (103), 65–74. doi: https://doi.org/10.15276/eltecs.27.103.2018.07
  47. Plakhtii, O. A., Nerubatskyi, V. P., Hordiienko, D. A., Khoruzhevskyi, H. A. (2020). Calculation of static and dynamic losses in power IGBT‑transistors by polynomial approximation of basic energy characteristics. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 82–88. doi: https://doi.org/10.33271/nvngu/2020-82
  48. Nerubatskyi, V., Plakhtii, O., Ananіeva, O., Zinchenko, O. (2019). Analysis of the Smart Grid concept for DC power supply systems. International scientific journal «INDUSTRY 4.0», 4 (4), 179–182.

##submission.downloads##

Опубліковано

2020-06-30

Як цитувати

Plakhtii, O., Nerubatskyi, V., Mashura, A., Hordiienko, D., & Khoruzhevskyi, H. (2020). Підвищення енергетичних показників зарядної станції електромобілів на базі трирівневого активного випрямляча. Eastern-European Journal of Enterprise Technologies, 3(8 (105), 46–55. https://doi.org/10.15587/1729-4061.2020.204068

Номер

Розділ

Енергозберігаючі технології та обладнання