Ефективність стабілізації окислювального псування м'ясо-містких виробів зі збалансованим жирно кислотним складом
DOI:
https://doi.org/10.15587/1729-4061.2020.205201Ключові слова:
м’ясомістка напівкопчені ковбаса, м'ясо качки, ненасичені жирні кислоти, екстракт розмаринуАнотація
Проведено дослідження жирнокислотного складу м’ясомісткої напівкопченої ковбаси з м’ясом качки Пекінської та визначено біологічну ефективність жиру продукту. Вивчено ефективність застосування екстракту розмарину на перебіг окислювальних процесів у напівкопченій ковбасі з високим вмістом ненасичених жирних кислот.
Експериментально встановлено високий вміст мононенасиченої ЖК С18:1 ω-9 (олеїнової) – 40,37 г/100 г жиру. Вміст ω-3 ПНЖК у м’ясо-місткій напівкопченій ковбасі із м’яса качки Пекінської становить 1,22 г/100 г жиру, що задовольняє рекомендовану добову потребу в ессенціальних ЖК на 27 %. Співвідношення між родинами ЖК w-3/w-6 в розроблених продуктах становить від 1:11 при рекомендованих фізіологічних нормах ідеального складу жирів в м’ясному продукті 1:10.
Дослідження підтверджують високу антиоксидантну активність екстракту розмарину та ефективне гальмування процесу окислення ліпідів в м'ясомістких ковбасних виробах. Внесення екстракту розмарину в кількості 0,02–0,06 % уповільнює гідролітичне окислення ліпідів фаршу на 29,13–35,00 %, гальмує перекісне окислення ліпідів в м'ясо-місткій напівкопченій ковбасі, знижуючи кількість перекисів практично в п’ять разів.
Підтверджено, що стабілізація перекісного окислення ліпідів в м'ясо-місткій напівкопченій ковбасі із м’яса качки Пекінської з високою концентрацією ненасичених жирних кислот як наслідок має зменшення концентрації вторинних продуктів окислення. Кількість альдегідів і кетонів була найменшою в кінці терміну зберігання готових виробів і становила 0,38–0,80 мг МА/кг продукту, що в 2,54–3,94 рази нижче, ніж в контрольному зразку. Найбільший стабілізаційний ефект отриманий при внесенні екстракту розмарину у кількості 0,06 %, що дозволяє знизити показники оксилювального псування жиру більше ніж в два разиПосилання
- Wood, J., Enser, M., Whittington, F., Richardson, R. (2007). Fatty Acids in Meat and Meat Products. Food Science and Technology, 87–107. doi: https://doi.org/10.1201/9781420006902.ch5
- Wood, J. D., Enser, M. (2017). Manipulating the Fatty Acid Composition of Meat to Improve Nutritional Value and Meat Quality. New Aspects of Meat Quality, 501–535. doi: https://doi.org/10.1016/b978-0-08-100593-4.00023-0
- Innes, J. K., Calder, P. C. (2020). Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. International Journal of Molecular Sciences, 21 (4), 1362. doi: https://doi.org/10.3390/ijms21041362
- Lisitsyn, A. B., Chernukha, I. M., Lunina, O. I. (2017). Fatty acid composition of meat from various animal species and the role of technological factors in trans- isomerization of fatty acids. Foods and Raw Materials, 5 (2), 54–61. doi: https://doi.org/10.21603/2308-4057-2017-2-54-61
- Mapiye, C., Aldai, N., Turner, T. D., Aalhus, J. L., Rolland, D. C., Kramer, J. K. G., Dugan, M. E. R. (2012). The labile lipid fraction of meat: From perceived disease and waste to health and opportunity. Meat Science, 92 (3), 210–220. doi: https://doi.org/10.1016/j.meatsci.2012.03.016
- Briggs, M. A., Bowen, K. J., Kris-Etherton, P. M. (2017). 23 Omega-3 Polyunsaturated Fatty Acids and Health. Food Lipids, 603–626. doi: https://doi.org/10.1201/9781315151854-24
- Shahidi, F., Ambigaipalan, P. (2018). Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annual Review of Food Science and Technology, 9 (1), 345–381. doi: https://doi.org/10.1146/annurev-food-111317-095850
- Wyness, L., Weichselbaum, E., O’Connor, A., Williams, E. B., Benelam, B., Riley, H., Stanner, S. (2011). Red meat in the diet: an update. Nutrition Bulletin, 36 (1), 34–77. doi: https://doi.org/10.1111/j.1467-3010.2010.01871.x
- Li, J., Sun, Q. (2019). Consumption of saturated fatty acids and coronary heart disease risk. International Journal of Cardiology, 279, 27–28. doi: https://doi.org/10.1016/j.ijcard.2019.01.022
- Vissers, L. E. T., Rijksen, J., Boer, J. M. A., Verschuren, W. M. M., van der Schouw, Y. T., Sluijs, I. (2018). Fatty acids from dairy and meat and their association with risk of coronary heart disease. European Journal of Nutrition, 58(7), 2639–2647. doi: https://doi.org/10.1007/s00394-018-1811-1
- Burlingame, B., Nishida, C., Uauy, R., Weisell, R. (Eds.) (2009). Fats and Fatty Acids in Human Nutrition. doi: https://doi.org/10.1159/isbn.978-3-8055-9262-8
- Lisitsyn, A. B., Chernukha, I. M., Ivankin, A. N. (2013). Comparative study of fatty acid composition of meat material from various animal species. Scientific Journal of Animal Science, 2 (5), 124–131.
- Bozhko, N., Tischenko, V., Pasichnyi, V., Polumbryk, M., Haschuk, O. (2018). Development of meat-containing minced semi-finished products based on the locally produced raw materials. Eastern-European Journal of Enterprise Technologies, 4 (11 (94)), 49–54. doi: https://doi.org/10.15587/1729-4061.2018.140052
- Huda, N., Aronal, A. P., Ahmad, R. (2012). Amino Acid and Fatty Acid Profiles of Peking and Muscovy Duck Meat. International Journal of Poultry Science, 11 (3), 229–236. doi: https://doi.org/10.3923/ijps.2012.229.236
- Mancini, S., Preziuso, G., Dal Bosco, A., Roscini, V., Parisi, G., Paci, G. (2017). Modifications of fatty acids profile, lipid peroxidation and antioxidant capacity in raw and cooked rabbit burgers added with ginger. Meat Science, 133, 151–158. doi: https://doi.org/10.1016/j.meatsci.2017.07.003
- Papamandjaris, A. A., Macdougall, D. E., Jones, P. J. H. (1998). Medium chain fatty acid metabolism and energy expenditure: Obesity treatment implications. Life Sciences, 62 (14), 1203–1215. doi: https://doi.org/10.1016/s0024-3205(97)01143-0
- Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E. et. al. (2004). Effects of fatty acids on meat quality: a review. Meat Science, 66 (1), 21–32. doi: https://doi.org/10.1016/s0309-1740(03)00022-6
- Kausar, T., Hanan, E., Ayob, O., Praween, B., Azad, Z. (2019). A review on functional ingredients in red meat products. Bioinformation, 15 (5), 358–363. doi: https://doi.org/10.6026/97320630015358
- Falowo, A. B., Fayemi, P. O., Muchenje, V. (2014). Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research International, 64, 171–181. doi: https://doi.org/10.1016/j.foodres.2014.06.022
- Bozhko, N., Tischenko, V., Pasichnyi, V., Marynin, A., Polumbryk, M. (2017). Analysis of the influence of rosemary and grape seed extracts on oxidation the lipids of peking duck meat. Eastern-European Journal of Enterprise Technologies, 4 (11 (88)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.108851
- Gobert, M., Bourguet, C., Terlouw, C., Deiss, V., Berdeaux, O., Comte, B., Durand, D. (2009). Pre-slaughter stress and lipoperoxidation: protective effect of vitamin E and plant extracts rich in polyphenols given to finishing cattle. In the Proceedings of the 11th International Symposium on Ruminant Physiology, 814–815.
- Moyo, B., Oyedemi, S., Masika, P. J., Muchenje, V. (2012). Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Science, 91 (4), 441–447. doi: https://doi.org/10.1016/j.meatsci.2012.02.029
- Nkukwana, T. T., Muchenje, V., Masika, P. J., Hoffman, L. C., Dzama, K., Descalzo, A. M. (2014). Fatty acid composition and oxidative stability of breast meat from broiler chickens supplemented with Moringa oleifera leaf meal over a period of refrigeration. Food Chemistry, 142, 255–261. doi: https://doi.org/10.1016/j.foodchem.2013.07.059
- Ahn, J., Grun, I., Mustapha, A. (2007). Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiology, 24 (1), 7–14. doi: https://doi.org/10.1016/j.fm.2006.04.006
- Bozhko, N., Tishchenko, V., Pasichnyi, V., Svyatnenko, R. (2019). Analysis of the effectiveness of natural plant extracts in the technology of combined meatcontaining bread. Ukrainian Food Journal, 8 (3), 522–531. doi: https://doi.org/10.24263/2304-974x-2019-8-3-9
- Pasichnyi, V., Ukrainets, A., Ukrainets, A., Khrapachov, O., Khrapachov, O., Marynin, A. et. al. (2018). Research into efficiency of pasterization of boiled sausage products in order to improve their storage term. Eastern-European Journal of Enterprise Technologies, 6 (11 (96)), 21–28. doi: https://doi.org/10.15587/1729-4061.2018.147946
- Fasseas, M. K., Mountzouris, K. C., Tarantilis, P. A., Polissiou, M., Zervas, G. (2008). Antioxidant activity in meat treated with oregano and sage essential oils. Food Chemistry, 106 (3), 1188–1194. doi: https://doi.org/10.1016/j.foodchem.2007.07.060
- Karre, L., Lopez, K., Getty, K. J. K. (2013). Natural antioxidants in meat and poultry products. Meat Science, 94 (2), 220–227. doi: https://doi.org/10.1016/j.meatsci.2013.01.007
- Carpenter, R., O’Grady, M. N., O’Callaghan, Y. C., O’Brien, N. M., Kerry, J. P. (2007). Evaluation of the antioxidant potential of grape seed and bearberry extracts in raw and cooked pork. Meat Science, 76 (4), 604–610. doi: https://doi.org/10.1016/j.meatsci.2007.01.021
- Doolaege, E. H. A., Vossen, E., Raes, K., De Meulenaer, B., Verhé, R., Paelinck, H., De Smet, S. (2012). Effect of rosemary extract dose on lipid oxidation, colour stability and antioxidant concentrations, in reduced nitrite liver pâtés. Meat Science, 90 (4), 925–931. doi: https://doi.org/10.1016/j.meatsci.2011.11.034
- Umaraw, P., Chauhan, G., Mendiratta, S. K., Verma, A. K., Arya, A. (2020). Effect of oregano and bay as natural preservatives in meat bread for extension of storage stability at ambient temperature. Journal of Food Processing and Preservation, 44 (4). doi: https://doi.org/10.1111/jfpp.14375
- Masoodi, F. A. (2016). Advances in use of natural antioxidants as food additives for improving the oxidative stability of meat Products. Madridge Journal of Food Technology, 1 (1), 10–17. doi: https://doi.org/10.18689/mjft-1000102
- Ukrainets, A. I., Pasichny, V. M., Zheludenko, Y. V. (2016). Antioxidant plant extracts in the meat processing industry. Biotechnologia Acta, 9 (2), 19–27. doi: https://doi.org/10.15407/biotech9.02.019
- Bozhko, N., Tishchenko, V., Pasichniy, V., Verteleckaja, N. (2018). Development of sausages from the peking duck meat. Prohresyvni tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1 (27), 112–122.
- Bozhko, N., Tischenko, V., Pasichnyi, V., Moroz, O. (2019). Research of nutritional and biological value of the semi smoked meatcontaining sausage. Food Science and Technology, 13 (4), 96–103. doi: https://doi.org/10.15673/fst.v13i4.1561
- Bozhko, N., Tischenko, V., Pasichnyi, V., Marynin, A., Polumbryk, M. (2017). Study of oxidation processes in duck meat with application of rosemary and grape seed extracts. EUREKA: Life Sciences, 4, 10–15. doi: https://doi.org/10.21303/2504-5695.2017.00374
- Biswas, S., Banerjee, R., Bhattacharyya, D., Patra, G., Das, A. K., Das, S. K. (2019). Technological investigation into duck meat and its products - a potential alternative to chicken. World’s Poultry Science Journal, 75 (4), 609–620. doi: https://doi.org/10.1017/s004393391900062x
- Baéza, E. (2006). Effects of genotype, age and nutrition on intramuscular lipids and meat quality. Proceedings of the 2006 Symposium COA/INRA Scientific Cooperation in Agriculture. Tainan, 79–82. Available at: http://www.angrin.tlri.gov.tw/%5C/INRA/o5.pdf
- Ali, M. S., Kang, G.-H., Yang, H.-S., Jeong, J.-Y., Hwang, Y.-H., Park, G.-B., Joo, S.-T. (2007). A Comparison of Meat Characteristics between Duck and Chicken Breast. Asian-Australasian Journal of Animal Sciences, 20 (6), 1002–1006. doi: https://doi.org/10.5713/ajas.2007.1002
- Chartrin, P., Méteau, K., Juin, H., Bernadet, M. D., Guy, G., Larzul, C. et. al. (2006). Effects of Intramuscular Fat Levels on Sensory Characteristics of Duck Breast Meat. Poultry Science, 85 (5), 914–922. doi: https://doi.org/10.1093/ps/85.5.914
- Stender, S., Astrup, A., Dyerberg, J. (2012). A trans European Union difference in the decline intransfatty acids in popular foods: a market basket investigation. BMJ Open, 2 (5), e000859. doi: https://doi.org/10.1136/bmjopen-2012-000859
- Gayet-Boyer, C., Tenenhaus-Aziza, F., Prunet, C., Marmonier, C., Malpuech-Brugère, C., Lamarche, B., Chardigny, J.-M. (2014). Is there a linear relationship between the dose of ruminant trans-fatty acids and cardiovascular risk markers in healthy subjects: results from a systematic review and meta-regression of randomised clinical trials. British Journal of Nutrition, 112 (12), 1914–1922. doi: https://doi.org/10.1017/s0007114514002578
- De Souza, R. J., Mente, A., Maroleanu, A., Cozma, A. I., Ha, V., Kishibe, T. et. al. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ, h3978. doi: https://doi.org/10.1136/bmj.h3978
- Fernández-Ginés, J. M., Fernández-López, J., Sayas-Barberá, E., Pérez-Alvarez, J. A. (2005). Meat Products as Functional Foods: A Review. Journal of Food Science, 70 (2), R37–R43. doi: https://doi.org/10.1111/j.1365-2621.2005.tb07110.x
- Remacle, C., Reusens, B. (Eds.) (2004). Functional foods, ageing and degenerative disease. Woodhead Publishing, 792. doi: https://doi.org/10.1533/9781855739017
- Movileanu, I., Núñez de González, M. T., Hafley, B., Miller, R. K., Keeton, J. T. (2013). Comparison of Dried Plum Puree, Rosemary Extract, and BHA/BHT as Antioxidants in Irradiated Ground Beef Patties. International Journal of Food Science, 2013, 1–7. doi: https://doi.org/10.1155/2013/360732
- Shah, M. A., Bosco, S. J. D., Mir, S. A. (2014). Plant extracts as natural antioxidants in meat and meat products. Meat Science, 98 (1), 21–33. doi: https://doi.org/10.1016/j.meatsci.2014.03.020
- Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., Lorenzo, J. M. (2019). A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants, 8 (10), 429. doi: https://doi.org/10.3390/antiox8100429
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Nataliia Bozhko, Vasyl Pasichnyi, Andriy Marynin, Vasil Tischenko, Igor Strashynskyi, Oleksandr Kyselov
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.