Виявлення закономірностей теплостійкості при дії полум᾽я на стінку деревини вогнезахищену лаком
DOI:
https://doi.org/10.15587/1729-4061.2020.210009Ключові слова:
захисні засоби, втрата маси, оброблення поверхні, вигорання деревиниАнотація
Проведено аналіз вогнезахисних матеріалів для дерев’яних будівельних конструкцій і встановлено необхідність розробки надійних методів дослідження процесу займання та розповсюдження полум'я по поверхні будівельної конструкції, необхідних для створення нових типів вогнезахисних матеріалів. Тому виникає необхідність визначення умов утворення бар'єру для теплопровідності і встановлення механізму гальмування передачі тепла до матеріалу. У зв’язку з цим розроблено розрахунково-аналітичний метод визначення теплопровідності, при застосуванні вогнезахисного лаку в якості покриття, що дозволяє оцінити коефіціент теплопровідності при високотемпературній дії. За експериментальними даними та теоретичними залежностями розраховано коефіцієнт теплопровідності вогнезахищеного шару пінококсу, що становить 0,36 Вт/(м∙K), що відповідно забезпечує телостійкість деревини.
У результаті досліджень доведено, що процес тепло ізолювання дерев’яної конструкції полягає в утворенні сажоподібних продуктів на поверхні природного горючого матеріалу. Завдяки цьому стало можливим визначення умов вогнезахисту деревини, шляхом утворення бар'єру для теплопровідності при розкладанні лаку на пінококс. Експериментальними дослідженнями підтверджено, що зразок вогнезахищеної деревини витримав температурний вплив дії теплового потоку протягом 900 с. Проведено оцінку максимально можливого проникнення температури через товщу покриття. Встановлено, що при температурній дії на зразок, яка значно перевищує температуру займання деревини, на необігрівній поверхні зразка це значення не перевищило 180 °С. Таким чином, є підстави стверджувати про можливість спрямованого регулювання процесів вогнезахисту деревини шляхом застосування вогнезахисних покриттів, здатних утворювати на поверхні матеріалу захисний шар, який гальмує швидкість вигорання деревиниПосилання
- Tsapko, Y., Kyrycyok, V., Tsapko, A., Bondarenko, O., Guzii, S. (2018). Increase of fire resistance of coating wood with adding mineral fillers. MATEC Web of Conferences, 230, 02034. doi: https://doi.org/10.1051/matecconf/201823002034
- Tsapko, Y., Bondarenko, O. P., Tsapko, A. (2019). Research of the Efficiency of the Fire Fighting Roof Composition for Cane. Materials Science Forum, 968, 61–67. doi: https://doi.org/10.4028/www.scientific.net/msf.968.61
- Tsapko, Y. V., Yu Tsapko, A., Bondarenko, O. P., Sukhanevych, M. V., Kobryn, M. V. (2019). Research of the process of spread of fire on beams of wood of fire-protected intumescent coatings. IOP Conference Series: Materials Science and Engineering, 708, 012112. doi: https://doi.org/10.1088/1757-899x/708/1/012112
- Krüger, S., Gluth, G. J. G., Watolla, M.-B., Morys, M., Häßler, D., Schartel, B. (2016). Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen. Bautechnik, 93 (8), 531–542. doi: https://doi.org/10.1002/bate.201600032
- Xiao, N., Zheng, X., Song, S., Pu, J. (2014). Effects of Complex Flame Retardant on the Thermal Decomposition of Natural Fiber. BioResources, 9 (3). doi: https://doi.org/10.15376/biores.9.3.4924-4933
- Gaff, M., Kačík, F., Gašparík, M., Todaro, L., Jones, D., Corleto, R. et. al. (2019). The effect of synthetic and natural fire-retardants on burning and chemical characteristics of thermally modified teak (Tectona grandis L. f.) wood. Construction and Building Materials, 200, 551–558. doi: https://doi.org/10.1016/j.conbuildmat.2018.12.106
- Zhao, P., Guo, C., Li, L. (2018). Flame retardancy and thermal degradation properties of polypropylene/wood flour composite modified with aluminum hypophosphite/melamine cyanurate. Journal of Thermal Analysis and Calorimetry, 135 (6), 3085–3093. doi: https://doi.org/10.1007/s10973-018-7544-9
- Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: https://doi.org/10.1016/j.firesaf.2016.01.011
- Nine, M. J., Tran, D. N. H., Tung, T. T., Kabiri, S., Losic, D. (2017). Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Interfaces, 9 (11), 10160–10168. doi: https://doi.org/10.1021/acsami.7b00572
- Carosio, F., Alongi, J. (2016). Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds. ACS Applied Materials & Interfaces, 8 (10), 6315–6319. doi: https://doi.org/10.1021/acsami.6b00598
- Shi, X.-H., Chen, L., Zhao, Q., Long, J.-W., Li, Y.-M., Wang, Y.-Z. (2020). Epoxy resin composites reinforced and fire-retarded by surficially-treated carbon fibers via a tunable and facile process. Composites Science and Technology, 187, 107945. doi: https://doi.org/10.1016/j.compscitech.2019.107945
- Md Nasir, K., Ramli Sulong, N. H., Johan, M. R., Afifi, A. M. (2018). An investigation into waterborne intumescent coating with different fillers for steel application. Pigment & Resin Technology, 47 (2), 142–153. doi: https://doi.org/10.1108/prt-09-2016-0089
- Erdoğan, Y. (2016). Production of an insulation material from carpet and boron wastes. Bulletin of the Mineral Research and Exploration, 152, 197–202. doi: https://doi.org/10.19111/bmre.74700
- Zhang, H., Li, Y.-M., Tao, W.-Q. (2017). Theoretical accuracy of anisotropic thermal conductivity determined by transient plane source method. International Journal of Heat and Mass Transfer, 108, 1634–1644. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.025
- Potter, M. C. (2019). Engineering analysis. Springer. doi: https://doi.org/10.1007/978-3-319-91683-5
- Tsapko, Y., Zavialov, D., Bondarenko, O., Marchenco, N., Mazurchuk, S., Horbachova, O. (2019). Determination of thermal and physical characteristics of dead pine wood thermal insulation products. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 37–43. doi: https://doi.org/10.15587/1729-4061.2019.175346
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Yuriy Tsapko, Vasyl Lomaha, Аleksii Tsapko, Serhii Mazurchuk, Oleksandra Horbachova, Denys Zavialov
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.