Математична модель спільного визначення ризику здоров'ю людини і виявлення небезпечних станів забруднення атмосфери міст на основі вимірювання поточних концентрацій забруднювачів
DOI:
https://doi.org/10.15587/1729-4061.2020.210059Ключові слова:
забруднення атмосфери, поточні концентрації забруднювачів, ризики здоров'ю людини, рекурентні станиАнотація
Розроблено математичну модель спільного визначення ризику здоров'ю людини та виявлення небезпечних станів забрудненої атмосфери міст на основі вимірювання поточних концентрацій забруднювачів. Структура моделі включає два структурних блоки. Вхідними даними для структурних блоків є результати вимірювання поточних концентрацій забруднювачів атмосфери в пункті контролю. У першому структурному блоці обчислюється поточний ризик здоров'ю людини, а в другому – визначаються рекурентні стани атмосфери для раннього виявлення небезпечних рівнів забруднення. Відмінною особливістю моделі є використання тільки вимірювань поточних концентрацій забруднювачів в атмосферному повітрі в пункті контролю. Метеорологічна або інша інформація не використовується. Тому розроблена модель є універсальною і може використовуватися при будь-яких метеорологічних умовах і особливостях міської інфраструктури. Проведена експериментальна перевірка працездатності запропонованої моделі на прикладі вимірювання поточних концентрацій формальдегіду, діоксиду азоту та аміаку в атмосферному повітрі типової міської інфраструктури. Встановлено, що розроблена модель дозволяє визначати ризик негайних токсичних ефектів і хронічної інтоксикації для людини, що наносяться атмосферними забрудненнями. Експериментально підтверджено, що запропонована модель дозволяє спільно з визначенням відповідних ризиків здоров'ю людини, виявляти небезпечні стани забрудненої атмосфери, в яких зазвичай накопичуються забруднювачі. Встановлено, що визначення поточної ймовірності рекурентних станів забрудненої атмосфери дозволяє з різним ступенем достовірності на 6-12 годин раніше виявляти можливу появу негативних впливів забруднень атмосферного повітря на здоров'я людиниПосилання
- Egondi, T., Kyobutungi, C., Ng, N., Muindi, K., Oti, S., Vijver, S. et. al. (2013). Community Perceptions of Air Pollution and Related Health Risks in Nairobi Slums. International Journal of Environmental Research and Public Health, 10 (10), 4851–4868. doi: https://doi.org/10.3390/ijerph10104851
- Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
- Ma, C. (2010). Who bears the environmental burden in China – An analysis of the distribution of industrial pollution sources? Ecological Economics, 69 (9), 1869–1876. doi: https://doi.org/10.1016/j.ecolecon.2010.05.005
- Goodman, A., Wilkinson, P., Stafford, M., Tonne, C. (2011). Characterising socio-economic inequalities in exposure to air pollution: A comparison of socio-economic markers and scales of measurement. Health & Place, 17 (3), 767–774. doi: https://doi.org/10.1016/j.healthplace.2011.02.002
- Su, J. G., Jerrett, M., de Nazelle, A., Wolch, J. (2011). Does exposure to air pollution in urban parks have socioeconomic, racial or ethnic gradients? Environmental Research, 111 (3), 319–328. doi: https://doi.org/10.1016/j.envres.2011.01.002
- Zou, B., Peng, F., Wan, N., Wilson, J. G., Xiong, Y. (2014). Sulfur dioxide exposure and environmental justice: a multi–scale and source–specific perspective. Atmospheric Pollution Research, 5 (3), 491–499. doi: https://doi.org/10.5094/apr.2014.058
- Zou, B., Wilson, J. G., Zhan, F. B., Zeng, Y. (2009). Air pollution exposure assessment methods utilized in epidemiological studies. Journal of Environmental Monitoring, 11 (3), 475. doi: https://doi.org/10.1039/b813889c
- Beckx, C., Int Panis, L., Arentze, T., Janssens, D., Torfs, R., Broekx, S., Wets, G. (2009). A dynamic activity-based population modelling approach to evaluate exposure to air pollution: Methods and application to a Dutch urban area. Environmental Impact Assessment Review, 29 (3), 179–185. doi: https://doi.org/10.1016/j.eiar.2008.10.001
- Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504
- Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
- Kondratenko, O. M., Vambol, S. O., Strokov, O. P., Avramenko, A. M. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 55–61.
- Bell, M. L., Ebisu, K., Belanger, K. (2007). Ambient Air Pollution and Low Birth Weight in Connecticut and Massachusetts. Environmental Health Perspectives, 115 (7), 1118–1124. doi: https://doi.org/10.1289/ehp.9759
- Ballester, F. (2002). The EMECAM project: a multicentre study on air pollution and mortality in Spain: combined results for particulates and for sulfur dioxide. Occupational and Environmental Medicine, 59 (5), 300–308. doi: https://doi.org/10.1136/oem.59.5.300
- Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
- Pascual, M., Ellner, S. P. (2000). Linking ecological patterns to environmental forcing via nonlinear time series models. Ecology, 81 (10), 2767–2780. doi: https://doi.org/10.1890/0012-9658(2000)081[2767:leptef]2.0.co;2
- Parrott, L. (2004). Analysis of simulated long-term ecosystem dynamics using visual recurrence analysis. Ecological Complexity, 1 (2), 111–125. doi: https://doi.org/10.1016/j.ecocom.2004.01.002
- Proulx, R. (2007). Ecological complexity for unifying ecological theory across scales: A field ecologist’s perspective. Ecological Complexity, 4 (3), 85–92. doi: https://doi.org/10.1016/j.ecocom.2007.03.003
- Marwan, N., Kurths, J. (2002). Nonlinear analysis of bivariate data with cross recurrence plots. Physics Letters A, 302 (5-6), 299–307. doi: https://doi.org/10.1016/s0375-9601(02)01170-2
- Kantz, H., Schreiber, T. (2003). Nonlinear Time Series Analysis. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511755798
- Eckmann, J.-P., Kamphorst, S. O., Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters (EPL), 4 (9), 973–977. doi: https://doi.org/10.1209/0295-5075/4/9/004
- Webber, C. L., Zbilut, J. P.; Riley, M. A., Van Orden, G. (Eds.) (2004). Chap. 2. Recurrence quantification analysis of nonlinear dynamical systems. Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, 26–94.
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
- Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics. Cambridge University Press. doi: https://doi.org/10.1017/cbo9781139174695
- Poulsen, A., Jomaas, G. (2011). Experimental Study on the Burning Behavior of Pool Fires in Rooms with Different Wall Linings. Fire Technology, 48 (2), 419–439. doi: https://doi.org/10.1007/s10694-011-0230-0
- Zhang, D., Xue, W. (2010). Effect of heat radiation on combustion heat release rate of larch. Journal of West China Forestry Science, 39, 148.
- Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.96694
- Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985
- Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: https://doi.org/10.15587/1729-4061.2018.122419
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
- Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: https://doi.org/10.15587/1729-4061.2017.117789
- Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. John Wiley & Sons, 640.
- Shafi, I., Ahmad, J., Shah, S. I., Kashif, F. M. (2009). Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review. EURASIP Journal on Advances in Signal Processing, 1. doi: https://doi.org/10.1155/2009/673539
- Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et. al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
- Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
- Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et. al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
- Singh, P. (2016). Time-frequency analysis via the fourier representation. HAL.
- Stankovic, L., Dakovic, M., Thayaparan, T. (2014). Time-frequency signal analysis. Kindle edition, 655.
- Avargel, Y., Cohen, I. (2010). Modeling and Identification of Nonlinear Systems in the Short-Time Fourier Transform Domain. IEEE Transactions on Signal Processing, 58 (1), 291–304. doi: https://doi.org/10.1109/tsp.2009.2028978
- Giv, H. H. (2013). Directional short-time Fourier transform. Journal of Mathematical Analysis and Applications, 399 (1), 100–107. doi: https://doi.org/10.1016/j.jmaa.2012.09.053
- Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
- Ferrante, M., Fiore, M., Copat, C., Morina, S., Ledda, C., Mauceri, C., Oliveri Conti, G. (2015). Air Pollution in High-Risk Sites–Risk Analysis and Health Impact. Current Air Quality Issues. doi: https://doi.org/10.5772/60345
- Naydenko, V. V., Gubanov, L. N., Kosarikov, A. N., Afanas'eva, I. M., Ivanov, A. V. (2003). Ekologo-ekonomicheskiy monitoring okruzhayushchey sredy. Nizhniy Novgorod, 186.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Boris Pospelov, Vladimir Andronov, Evgeniy Rybka, Olekcii Krainiukov, Nadiya Maksymenko, Ruslan Meleshchenko, Yuliia Bezuhla, Inna Hrachova, Roman Nesterenko, Alla Shumilova
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.