Controller of fluorine­doped tin oxide thin films deposition via cycles and annealing temperatures by spin coating techniques

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2020.210818

Ключові слова:

spin coating, number of cycles, annealing temperature, resistivity, transmittance

Анотація

Fluorine-doped tin oxide (FTO) thin films have been deposited by the modified spin coating method at 3000 rpm using tin (II) chloride dehydrate (SnCl2×2H2O) as a precursor, ammonium fluoride (NH4F) as a dopant and ethanol as a solvent. The aim of this research is to find out the quality of the thin film based on the number of cycles (3, 4, 5, and 6 cycles) and annealing temperature (300, 400 and 500 °C). The variation of annealing temperature and number of cycles can affect the crystal structure of the FTO thin film, crystal size and grain size. Increasing the number of cycles and annealing temperature can lead to larger crystallite size and lower dislocation density, so that electrons between the grains can move easily. The large grain can reduce the grain boundary, increasing the electron mobility and decreasing the resistivity. XRD analysis shows that the structure of SnO2 polycrystalline with the most dominant crystal plane (110) is formed in this research when compared to the intensity of other structures. The resistivity value decreases with increasing the annealing temperature and number of cycles. In addition, transparency value also decreases along with increasing the annealing temperature and number of cycles. The optimum results of resistivity and transparency values obtained in this research are 1.692´10-2 Ω×cm and 69.232 % at 500 °C and 5 cycles. These results can be used as a reference for further study to optimize the production of fluorine-doped tin oxide (FTO) thin film with spin coating. Therefore, many factors that affect the production of fluorine-doped tin oxide (FTO) thin film, either dissolving stage or deposition process on the substrate surface still need to be studied deeply to obtain the optimum result

Спонсор дослідження

  • The authors are grateful for the financial support of the Tematik Grant from the Research Center for Metallurgy and Materials LIPI.

Біографії авторів

Tri Arini, Indonesian Institute of Sciences (LIPI) Building 470, Kawasan Puspiptek Serpong, Tangerang Selatan, 15314, Indonesia

Master of Engineering, Junior Researcher

Research Center for Metallurgy and Material

Latifa Hanum Lalasari, Indonesian Institute of Sciences (LIPI) Building 470, Kawasan Puspiptek Serpong, Tangerang Selatan, 15314, Indonesia

Doctor of Engineering, Senior Researcher

Research Center for Metallurgy and Material

Lia Andriyah, Indonesian Institute of Sciences (LIPI) Building 470, Kawasan Puspiptek Serpong, Tangerang Selatan, 15314, Indonesia

Master of Physical and Mathematical Sciences, Junior Researcher

Research Center for Metallurgy and Material

Nadia Natasha, Indonesian Institute of Sciences (LIPI) Building 470, Kawasan Puspiptek Serpong, Tangerang Selatan, 15314, Indonesia

Master of Engineering, Junior Researcher

Research Center for Metallurgy and Material

Fariza Yunita, Indonesian Institute of Sciences (LIPI) Building 470, Kawasan Puspiptek Serpong, Tangerang Selatan, 15314, Indonesia

Master of Engineering, Junior Researcher

Research Center for Metallurgy and Material

Florentinus Firdiyono, Indonesian Institute of Sciences (LIPI) Building 470, Kawasan Puspiptek Serpong, Tangerang Selatan, 15314, Indonesia

Doctor of Engineering, Professor

Research Center for Metallurgy and Material

Adjie Maulana Syaputra, Universitas Sultan Ageng Tirtayasa Jl. Jenderal Sudirman Km 3, Kota Cilegon, Banten, 42435, Indonesia

Bachelor of Engineering, Undergraduate Student

Department of Metallurgy Engineering

Amalia Solehah, Universitas Sultan Ageng Tirtayasa Jl. Jenderal Sudirman Km 3, Kota Cilegon, Banten, 42435, Indonesia

Doctor of Engineering, Associate Professor

Department of Metallurgy Engineering

Achmad Subhan, Indonesian Institute of Sciences (LIPI) Kawasan Puspiptek Serpong, Tangerang Selatan, 15314, Indonesia

Master of Engineering, Senior Researcher

Research Center for Physics

Посилання

  1. Stadler, A. (2012). Transparent Conducting Oxides – An Up-To-Date Overview. Materials, 5 (12), 661–683. doi: https://doi.org/10.3390/ma5040661
  2. Morris, G. C., McElnea, A. E. (1996). Fluorine doped tin oxide films from spray pyrolysis of stannous fluoride solutions. Applied Surface Science, 92, 167–170. doi: https://doi.org/10.1016/0169-4332(95)00224-3
  3. Moataz, B. S., Mohamed, B. S., Sherif, A. K., Marwa, A. (2016). Preparation and Characterization of Fluorine Tin Oxide Using New Approach of Spray Technique and Electro Spinning Technique. International Journal of Advances in Science Engineering and Technology, 4 (4), 78–81.
  4. Afre, R. A., Sharma, N., Sharon, M., Sharon, M. (2018). Transparent Conducting Oxide Films for Various Applications: A Review. REVIEWS ON ADVANCED MATERIALS SCIENCE, 53 (1), 79–89. doi: https://doi.org/10.1515/rams-2018-0006
  5. Zahid, R., Aris, D., Kosim (2018). Preliminary Study Flourine Tin Oxide (FTO) Using Sol-Gel Spin Coating Techniques. IOSR Journal of Applied Physics (IOSR-JAP), 10 (2), 27–30.
  6. Shi, X. H., Xu, K. J. (2017). Properties of fluorine-doped tin oxide films prepared by an improved sol-gel process. Materials Science in Semiconductor Processing, 58, 1–7. doi: https://doi.org/10.1016/j.mssp.2016.09.038
  7. George, A., Kumari, P., Soin, N., Roy, S. S., McLaughlin, J. A. (2010). Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor deposition. Materials Chemistry and Physics, 123 (2-3), 634–638. doi: https://doi.org/10.1016/j.matchemphys.2010.05.029
  8. Agbim, E. G., Ikhioya, I. L., Ekpunobi, A. J. (2019). Syntheses and Characterization of Fluorine Doped Tin Oxide Using Spray Pyrolysis Technique. IOSR Journal of Applied Physics (IOSR-JAP), 11 (3), 70–78.
  9. Yu, S., Zhang, W., Li, L., Xu, D., Dong, H., Jin, Y. (2013). Fabrication of p-type SnO2 films via pulsed laser deposition method by using Sb as dopant. Applied Surface Science, 286, 417–420. doi: https://doi.org/10.1016/j.apsusc.2013.09.107
  10. Brousseau, J.-L., Bourque, H., Tessier, A., Leblanc, R. M. (1997). Electrical properties and topography of SnO2 thin films prepared by reactive sputtering. Applied Surface Science, 108 (3), 351–358. doi: https://doi.org/10.1016/s0169-4332(96)00679-4
  11. Hammad, T. M., Hejazy, N. K. (2011). Structural, electrical and optical properties of ATO thin films fabricated by dip coating method. International Journal of Material Science Innovations, 7 (4), 209–212.
  12. Khan, M. I., Bhatti, K. A., Qindeel, R., Althobaiti, H. S., Alonizan, N. (2017). Structural, electrical and optical properties of multilayer TiO2 thin films deposited by sol–gel spin coating. Results in Physics, 7, 1437–1439. doi: https://doi.org/10.1016/j.rinp.2017.03.023
  13. Susilawati, Doyan, A., Muliyadi, L., Hakim, S., Taufik, M., Nazarudin. (2019). Characteristics and Optical Properties of Fluorine Doped SnO2 Thin Film Prepared by a Sol–Gel Spin Coating. Journal of Physics: Conference Series, 1397, 012003. doi: https://doi.org/10.1088/1742-6596/1397/1/012003
  14. Imawanti, Y. D., Doyan, A., Gunawan, E. R. (2017). Sintesis lapisan tipis (thin film) SnO2 dan SnO2:Al menggunakan teknik sol-gel spin coating pada substrat kaca dan quartz. Jurnal Penelitian Pendidikan IPA, 3 (1). doi: https://doi.org/10.29303/jppipa.v3i1.49
  15. Goebbert, C., Nonninger, R., Aegerter, M. A., Schmidt, H. (1999). Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions. Thin Solid Films, 351 (1-2), 79–84. doi: https://doi.org/10.1016/s0040-6090(99)00209-6
  16. Moradi-Haji Jafan, M., Zamani-Meymian, M.-R., Rahimi, R., Rabbani, M. (2014). The effect of solvents and the thickness on structural, optical and electrical properties of ITO thin films prepared by a sol–gel spin-coating process. Journal of Nanostructure in Chemistry, 4 (1). doi: https://doi.org/10.1007/s40097-014-0089-y
  17. Subramanian, N. S., Savarimuthu, E., Sanjeeviraja, C., Ramamurthy, S. (2005). Effect of heat treatment temperature on the spin coated fluorine doped tin oxide thin films for solar cell applications. Transactions-society for the advancement of electrochemical science and technology, 40 (2), 62–67.
  18. Kahattha, C., Noonuruk, R., Pecharapa, W. (2016). Influence of annealing temperature on optical properties of fluoride doped tin oxide films grown by the sol-gel spin-coating method. Integrated Ferroelectrics, 175 (1), 138–145. doi: https://doi.org/10.1080/10584587.2016.1203646
  19. Arini, T., Yuwono, A. H., Lalasari, L. H., Sofyan, N., Ramahdita, G., Firdiyono, F. et. al. (2016). The Influence of Deposition Time and Substrate Temperature during the Spray Pyrolysis Process on the Electrical Resistivity and Optical Transmittance of 2 wt% Fluorine-doped Tin Oxide Conducting Glass. International Journal of Technology, 7 (8), 1335. doi: https://doi.org/10.14716/ijtech.v7i8.7065
  20. Tran, Q.-P., Fang, J.-S., Chin, T.-S. (2015). Properties of fluorine-doped SnO2 thin films by a green sol–gel method. Materials Science in Semiconductor Processing, 40, 664–669. doi: https://doi.org/10.1016/j.mssp.2015.07.047
  21. Sengupta, J., Sahoo, R. K., Bardhan, K. K., Mukherjee, C. D. (2011). Influence of annealing temperature on the structural, topographical and optical properties of sol–gel derived ZnO thin films. Materials Letters, 65 (17-18), 2572–2574. doi: https://doi.org/10.1016/j.matlet.2011.06.021
  22. Trisdianto, C. A., Yuwono, A. H., Arini, T., Sofyan, N., Fikri, D., Lalasari, L. H. (2016). Optical Transmittance, Electrical Resistivity and Microstructural Characteristics of Undoped and Fluorine-doped Tin Oxide Conductive Glass Fabricated by Spray Pyrolysis Technique with Modified Ultrasonic Nebulizer. International Journal of Technology, 7 (8), 1316. doi: https://doi.org/10.14716/ijtech.v7i8.6885
  23. Dissanayake, D., Samarasekara, P. Effect of number of layers on structural and optical properties of spin coated CdS films. Available at: https://www.researchgate.net/profile/Charuni_Dissanayake2/publication/324492653_Effect_of_number_of_layers_on_structural_and_optical_properties_of_spin_coated_CdS_films/links/5ad3c6bfa6fdcc29357ff477/Effect-of-number-of-layers-on-structural-and-optical-properties-of-spin-coated-CdS-films.pdf
  24. Koçyiğit, A., Tatar, D., Battal, A., Ertuğrul, M., Düzgün, B. (2012). Highly efficient optoelectronic properties of doubly doped SnO2 thin film deposited by spin coating technique. Journal of Ovonic Research, 8 (6), 171–178.
  25. Suryanarayana, C., Norton, M. G. (1998). X-Rays and Diffraction. X-Ray Diffraction, 3–19. doi: https://doi.org/10.1007/978-1-4899-0148-4_1
  26. Sadikin, S. N., Rahman, M. Y. A., Umar, A. A., Salleh, M. M. (2017). Effect of Spin-Coating Cycle on the Properties of TiO2 Thin Film and Performance of DSSC. International Journal of Electrochemical Science, 12, 5529–5538. doi: https://doi.org/10.20964/2017.06.57
  27. Bu, I. Y. Y. (2014). Sol–gel deposition of fluorine-doped tin oxide glasses for dye sensitized solar cells. Ceramics International, 40 (1), 417–422. doi: https://doi.org/10.1016/j.ceramint.2013.06.017
  28. Adjimi, A., Zeggar, M. L., Attaf, N., Aida, M. S. (2018). Fluorine-Doped Tin Oxide Thin Films Deposition by Sol-Gel Technique. Journal of Crystallization Process and Technology, 08 (04), 89–106. doi: https://doi.org/10.4236/jcpt.2018.84006
  29. Banyamin, Z., Kelly, P., West, G., Boardman, J. (2014). Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering. Coatings, 4 (4), 732–746. doi: https://doi.org/10.3390/coatings4040732
  30. Ng, Z.-N., Chan, K.-Y., Tohsophon, T. (2012). Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique. Applied Surface Science, 258 (24), 9604–9609. doi: https://doi.org/10.1016/j.apsusc.2012.05.156
  31. Kuo, S.-Y., Chen, W.-C., Cheng, C.-P. (2006). Investigation of annealing-treatment on the optical and electrical properties of sol–gel-derived zinc oxide thin films. Superlattices and Microstructures, 39 (1-4), 162–170. doi: https://doi.org/10.1016/j.spmi.2005.08.039
  32. Patil, S. L., Chougule, M. A., Pawar, S. G., Raut, B. T., Sen, S., Patil, V. B. (2011). New process for synthesis of ZnO thin films: Microstructural, optical and electrical characterization. Journal of Alloys and Compounds, 509 (41), 10055–10061. doi: https://doi.org/10.1016/j.jallcom.2011.08.030
  33. Lee, S.-M., Joo, Y.-H., Kim, C.-I. (2014). Influences of film thickness and annealing temperature on properties of sol–gel derived ZnO–SnO 2 nanocomposite thin film. Applied Surface Science, 320, 494–501. doi: https://doi.org/10.1016/j.apsusc.2014.09.099
  34. Luangchaisri, C., Dumrongrattana, S., Rakkwamsuk, P. (2012). Effect of heat treatment on electrical properties of fluorine doped tin dioxide films prepared by ultrasonic spray pyrolysis technique. Procedia Engineering, 32, 663–669. doi: https://doi.org/10.1016/j.proeng.2012.01.1324
  35. Memarian, N., Rozati, S. M., Elamurugu, E., Fortunato, E. (2010). Characterization of SnO2:F thin films deposited by an economic spray pyrolysis technique. Physica Status Solidi (c), 7 (9), 2277–2281. doi: https://doi.org/10.1002/pssc.200983738
  36. Kim, H., Park, H.-H. (2012). A study on the electrical properties of fluorine doped direct-patternable SnO2 thin films. Ceramics International, 38, S609–S612. doi: https://doi.org/10.1016/j.ceramint.2011.05.108
  37. Ray, S. C., Karanjai, M. K., Dasgupta, D. (1997). Preparation and study of doped and undoped tin dioxide films by the open air chemical vapour deposition technique. Thin Solid Films, 307 (1-2), 221–227. doi: https://doi.org/10.1016/s0040-6090(97)00268-x

##submission.downloads##

Опубліковано

2020-10-31

Як цитувати

Arini, T., Lalasari, L. H., Andriyah, L., Natasha, N., Yunita, F., Firdiyono, F., Maulana Syaputra, A., Solehah, A., & Subhan, A. (2020). Controller of fluorine­doped tin oxide thin films deposition via cycles and annealing temperatures by spin coating techniques. Eastern-European Journal of Enterprise Technologies, 5(12 (107), 57–65. https://doi.org/10.15587/1729-4061.2020.210818

Номер

Розділ

Матеріалознавство