Controller of fluorinedoped tin oxide thin films deposition via cycles and annealing temperatures by spin coating techniques
DOI:
https://doi.org/10.15587/1729-4061.2020.210818Ключові слова:
spin coating, number of cycles, annealing temperature, resistivity, transmittanceАнотація
Fluorine-doped tin oxide (FTO) thin films have been deposited by the modified spin coating method at 3000 rpm using tin (II) chloride dehydrate (SnCl2×2H2O) as a precursor, ammonium fluoride (NH4F) as a dopant and ethanol as a solvent. The aim of this research is to find out the quality of the thin film based on the number of cycles (3, 4, 5, and 6 cycles) and annealing temperature (300, 400 and 500 °C). The variation of annealing temperature and number of cycles can affect the crystal structure of the FTO thin film, crystal size and grain size. Increasing the number of cycles and annealing temperature can lead to larger crystallite size and lower dislocation density, so that electrons between the grains can move easily. The large grain can reduce the grain boundary, increasing the electron mobility and decreasing the resistivity. XRD analysis shows that the structure of SnO2 polycrystalline with the most dominant crystal plane (110) is formed in this research when compared to the intensity of other structures. The resistivity value decreases with increasing the annealing temperature and number of cycles. In addition, transparency value also decreases along with increasing the annealing temperature and number of cycles. The optimum results of resistivity and transparency values obtained in this research are 1.692´10-2 Ω×cm and 69.232 % at 500 °C and 5 cycles. These results can be used as a reference for further study to optimize the production of fluorine-doped tin oxide (FTO) thin film with spin coating. Therefore, many factors that affect the production of fluorine-doped tin oxide (FTO) thin film, either dissolving stage or deposition process on the substrate surface still need to be studied deeply to obtain the optimum result
Спонсор дослідження
- The authors are grateful for the financial support of the Tematik Grant from the Research Center for Metallurgy and Materials LIPI.
Посилання
- Stadler, A. (2012). Transparent Conducting Oxides – An Up-To-Date Overview. Materials, 5 (12), 661–683. doi: https://doi.org/10.3390/ma5040661
- Morris, G. C., McElnea, A. E. (1996). Fluorine doped tin oxide films from spray pyrolysis of stannous fluoride solutions. Applied Surface Science, 92, 167–170. doi: https://doi.org/10.1016/0169-4332(95)00224-3
- Moataz, B. S., Mohamed, B. S., Sherif, A. K., Marwa, A. (2016). Preparation and Characterization of Fluorine Tin Oxide Using New Approach of Spray Technique and Electro Spinning Technique. International Journal of Advances in Science Engineering and Technology, 4 (4), 78–81.
- Afre, R. A., Sharma, N., Sharon, M., Sharon, M. (2018). Transparent Conducting Oxide Films for Various Applications: A Review. REVIEWS ON ADVANCED MATERIALS SCIENCE, 53 (1), 79–89. doi: https://doi.org/10.1515/rams-2018-0006
- Zahid, R., Aris, D., Kosim (2018). Preliminary Study Flourine Tin Oxide (FTO) Using Sol-Gel Spin Coating Techniques. IOSR Journal of Applied Physics (IOSR-JAP), 10 (2), 27–30.
- Shi, X. H., Xu, K. J. (2017). Properties of fluorine-doped tin oxide films prepared by an improved sol-gel process. Materials Science in Semiconductor Processing, 58, 1–7. doi: https://doi.org/10.1016/j.mssp.2016.09.038
- George, A., Kumari, P., Soin, N., Roy, S. S., McLaughlin, J. A. (2010). Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor deposition. Materials Chemistry and Physics, 123 (2-3), 634–638. doi: https://doi.org/10.1016/j.matchemphys.2010.05.029
- Agbim, E. G., Ikhioya, I. L., Ekpunobi, A. J. (2019). Syntheses and Characterization of Fluorine Doped Tin Oxide Using Spray Pyrolysis Technique. IOSR Journal of Applied Physics (IOSR-JAP), 11 (3), 70–78.
- Yu, S., Zhang, W., Li, L., Xu, D., Dong, H., Jin, Y. (2013). Fabrication of p-type SnO2 films via pulsed laser deposition method by using Sb as dopant. Applied Surface Science, 286, 417–420. doi: https://doi.org/10.1016/j.apsusc.2013.09.107
- Brousseau, J.-L., Bourque, H., Tessier, A., Leblanc, R. M. (1997). Electrical properties and topography of SnO2 thin films prepared by reactive sputtering. Applied Surface Science, 108 (3), 351–358. doi: https://doi.org/10.1016/s0169-4332(96)00679-4
- Hammad, T. M., Hejazy, N. K. (2011). Structural, electrical and optical properties of ATO thin films fabricated by dip coating method. International Journal of Material Science Innovations, 7 (4), 209–212.
- Khan, M. I., Bhatti, K. A., Qindeel, R., Althobaiti, H. S., Alonizan, N. (2017). Structural, electrical and optical properties of multilayer TiO2 thin films deposited by sol–gel spin coating. Results in Physics, 7, 1437–1439. doi: https://doi.org/10.1016/j.rinp.2017.03.023
- Susilawati, Doyan, A., Muliyadi, L., Hakim, S., Taufik, M., Nazarudin. (2019). Characteristics and Optical Properties of Fluorine Doped SnO2 Thin Film Prepared by a Sol–Gel Spin Coating. Journal of Physics: Conference Series, 1397, 012003. doi: https://doi.org/10.1088/1742-6596/1397/1/012003
- Imawanti, Y. D., Doyan, A., Gunawan, E. R. (2017). Sintesis lapisan tipis (thin film) SnO2 dan SnO2:Al menggunakan teknik sol-gel spin coating pada substrat kaca dan quartz. Jurnal Penelitian Pendidikan IPA, 3 (1). doi: https://doi.org/10.29303/jppipa.v3i1.49
- Goebbert, C., Nonninger, R., Aegerter, M. A., Schmidt, H. (1999). Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions. Thin Solid Films, 351 (1-2), 79–84. doi: https://doi.org/10.1016/s0040-6090(99)00209-6
- Moradi-Haji Jafan, M., Zamani-Meymian, M.-R., Rahimi, R., Rabbani, M. (2014). The effect of solvents and the thickness on structural, optical and electrical properties of ITO thin films prepared by a sol–gel spin-coating process. Journal of Nanostructure in Chemistry, 4 (1). doi: https://doi.org/10.1007/s40097-014-0089-y
- Subramanian, N. S., Savarimuthu, E., Sanjeeviraja, C., Ramamurthy, S. (2005). Effect of heat treatment temperature on the spin coated fluorine doped tin oxide thin films for solar cell applications. Transactions-society for the advancement of electrochemical science and technology, 40 (2), 62–67.
- Kahattha, C., Noonuruk, R., Pecharapa, W. (2016). Influence of annealing temperature on optical properties of fluoride doped tin oxide films grown by the sol-gel spin-coating method. Integrated Ferroelectrics, 175 (1), 138–145. doi: https://doi.org/10.1080/10584587.2016.1203646
- Arini, T., Yuwono, A. H., Lalasari, L. H., Sofyan, N., Ramahdita, G., Firdiyono, F. et. al. (2016). The Influence of Deposition Time and Substrate Temperature during the Spray Pyrolysis Process on the Electrical Resistivity and Optical Transmittance of 2 wt% Fluorine-doped Tin Oxide Conducting Glass. International Journal of Technology, 7 (8), 1335. doi: https://doi.org/10.14716/ijtech.v7i8.7065
- Tran, Q.-P., Fang, J.-S., Chin, T.-S. (2015). Properties of fluorine-doped SnO2 thin films by a green sol–gel method. Materials Science in Semiconductor Processing, 40, 664–669. doi: https://doi.org/10.1016/j.mssp.2015.07.047
- Sengupta, J., Sahoo, R. K., Bardhan, K. K., Mukherjee, C. D. (2011). Influence of annealing temperature on the structural, topographical and optical properties of sol–gel derived ZnO thin films. Materials Letters, 65 (17-18), 2572–2574. doi: https://doi.org/10.1016/j.matlet.2011.06.021
- Trisdianto, C. A., Yuwono, A. H., Arini, T., Sofyan, N., Fikri, D., Lalasari, L. H. (2016). Optical Transmittance, Electrical Resistivity and Microstructural Characteristics of Undoped and Fluorine-doped Tin Oxide Conductive Glass Fabricated by Spray Pyrolysis Technique with Modified Ultrasonic Nebulizer. International Journal of Technology, 7 (8), 1316. doi: https://doi.org/10.14716/ijtech.v7i8.6885
- Dissanayake, D., Samarasekara, P. Effect of number of layers on structural and optical properties of spin coated CdS films. Available at: https://www.researchgate.net/profile/Charuni_Dissanayake2/publication/324492653_Effect_of_number_of_layers_on_structural_and_optical_properties_of_spin_coated_CdS_films/links/5ad3c6bfa6fdcc29357ff477/Effect-of-number-of-layers-on-structural-and-optical-properties-of-spin-coated-CdS-films.pdf
- Koçyiğit, A., Tatar, D., Battal, A., Ertuğrul, M., Düzgün, B. (2012). Highly efficient optoelectronic properties of doubly doped SnO2 thin film deposited by spin coating technique. Journal of Ovonic Research, 8 (6), 171–178.
- Suryanarayana, C., Norton, M. G. (1998). X-Rays and Diffraction. X-Ray Diffraction, 3–19. doi: https://doi.org/10.1007/978-1-4899-0148-4_1
- Sadikin, S. N., Rahman, M. Y. A., Umar, A. A., Salleh, M. M. (2017). Effect of Spin-Coating Cycle on the Properties of TiO2 Thin Film and Performance of DSSC. International Journal of Electrochemical Science, 12, 5529–5538. doi: https://doi.org/10.20964/2017.06.57
- Bu, I. Y. Y. (2014). Sol–gel deposition of fluorine-doped tin oxide glasses for dye sensitized solar cells. Ceramics International, 40 (1), 417–422. doi: https://doi.org/10.1016/j.ceramint.2013.06.017
- Adjimi, A., Zeggar, M. L., Attaf, N., Aida, M. S. (2018). Fluorine-Doped Tin Oxide Thin Films Deposition by Sol-Gel Technique. Journal of Crystallization Process and Technology, 08 (04), 89–106. doi: https://doi.org/10.4236/jcpt.2018.84006
- Banyamin, Z., Kelly, P., West, G., Boardman, J. (2014). Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering. Coatings, 4 (4), 732–746. doi: https://doi.org/10.3390/coatings4040732
- Ng, Z.-N., Chan, K.-Y., Tohsophon, T. (2012). Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique. Applied Surface Science, 258 (24), 9604–9609. doi: https://doi.org/10.1016/j.apsusc.2012.05.156
- Kuo, S.-Y., Chen, W.-C., Cheng, C.-P. (2006). Investigation of annealing-treatment on the optical and electrical properties of sol–gel-derived zinc oxide thin films. Superlattices and Microstructures, 39 (1-4), 162–170. doi: https://doi.org/10.1016/j.spmi.2005.08.039
- Patil, S. L., Chougule, M. A., Pawar, S. G., Raut, B. T., Sen, S., Patil, V. B. (2011). New process for synthesis of ZnO thin films: Microstructural, optical and electrical characterization. Journal of Alloys and Compounds, 509 (41), 10055–10061. doi: https://doi.org/10.1016/j.jallcom.2011.08.030
- Lee, S.-M., Joo, Y.-H., Kim, C.-I. (2014). Influences of film thickness and annealing temperature on properties of sol–gel derived ZnO–SnO 2 nanocomposite thin film. Applied Surface Science, 320, 494–501. doi: https://doi.org/10.1016/j.apsusc.2014.09.099
- Luangchaisri, C., Dumrongrattana, S., Rakkwamsuk, P. (2012). Effect of heat treatment on electrical properties of fluorine doped tin dioxide films prepared by ultrasonic spray pyrolysis technique. Procedia Engineering, 32, 663–669. doi: https://doi.org/10.1016/j.proeng.2012.01.1324
- Memarian, N., Rozati, S. M., Elamurugu, E., Fortunato, E. (2010). Characterization of SnO2:F thin films deposited by an economic spray pyrolysis technique. Physica Status Solidi (c), 7 (9), 2277–2281. doi: https://doi.org/10.1002/pssc.200983738
- Kim, H., Park, H.-H. (2012). A study on the electrical properties of fluorine doped direct-patternable SnO2 thin films. Ceramics International, 38, S609–S612. doi: https://doi.org/10.1016/j.ceramint.2011.05.108
- Ray, S. C., Karanjai, M. K., Dasgupta, D. (1997). Preparation and study of doped and undoped tin dioxide films by the open air chemical vapour deposition technique. Thin Solid Films, 307 (1-2), 221–227. doi: https://doi.org/10.1016/s0040-6090(97)00268-x
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Tri Arini
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.